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Abstract. In this paper we prove that the Gromov-Hausdorff distance between
R"™ and its subset A is finite if and only if A is an e-net in R” for some & > 0.
For infinite-dimensional Euclidean spaces this is not true. The proof is essen-
tially based on upper estimate of the Euclidean Gromov-Hausdorff distance by
means of the Gromov-Hausdorff distance.
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1 Introduction

This paper is devoted to investigation of geometry of the classical Gromov-Haus-
dorff distance [2—4]. Traditionally, the Gromov-Hausdorff distance is used for
bounded metric spaces, mainly, for compact ones. In the case of non-bounded
metric spaces, this distance is applied to define the pointed Gromov-Hausdorff
convergence, and besides, there were a few attempts to define the corresponding
distance function in this case, see for instance [5]. Since the Gromov-Hausdorff
distance between isometric metric spaces vanishes, it is natural to identify such
spaces in this theory. Thus, the main space for investigating the Gromov-Haus-
dorff distance is the space M of non-empty compact metric spaces considered
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upto isometry, endowed with the Gromov-Hausdorff distance. Here the distance
function is a metric, and this metric is complete, separable, geodesic, etc., see for
details [2,4].

In [4], Gromov described some geometric properties of the Gromov-Haus-
dorff distance on the space GH of all non-empty metric spaces, not necessarily
bounded, considered up to isometry. It is easy to see that GH is not a set, but
a proper class in terms of von Neumann-Bernays-Godel set theory. Gromov sug-
gested to consider subclasses consisting of all metric spaces on finite distance
between each other. We called such subclasses clouds. Gromov announced that
the clouds are obviously complete and contractible [4]. He suggested to see that
on the example of the cloud containing IR". The idea is to consider a mapping of
GH into itself that for each X € GH, multiplies all distances in X by some real A >0.
It is easy to see that such mapping takes R" to an isometric metric space, i.e., R"
is a fixed point of this mapping. However, the Gromov-Hausdorff distances from
R" to all other metrics spaces in its cloud are multiplied by A as well. It remains
to see what happens when A — 0+.

Nevertheless, these “obvious observations” lead to a few questions. To start
with, the clouds are proper classes (B. Nesterov, private conversations); contracti-
bility is a topological notion; so, to speak about contractibility of a cloud, we have
to define a topology on it. However, it is not possible to introduce a topology
on a proper class, because the proper class cannot be an element of any other
class by definition, but each topological space is an element of its own topology.
Bogaty and Tuzhilin [1] developed a convenient language that allows to avoid
the set-theoretic problems. Namely, they introduced an analogue of topology
on so-called set-filtered classes (each set belongs to this family, together with the
class GH) and defined continuous mappings between such classes. At the same
time, the authors of [1] found examples of metric spaces that jump onto infinite
Gromov-Hausdorff distance after multiplying their distance functions on some
A>0. Thus, the multiplication on such A does not map the clouds into themselves.
This strange behavior of clouds increased the interest to them, see [1] for details.

In the present paper we continue investigation of the geometry of the stan-
dard (non-pointed) Gromov-Hausdorff distance between non-bounded metric
spaces. It is well-known that each e-net of a metric space X is on finite Gromov-
Hausdorff distance from X. Is the converse statement true as well? Example 3.1
shows that it is not true even for infinite-dimensional Euclidean spaces. In the
present paper we prove that the converse statement holds for finite-dimensional
Euclidean spaces. A natural question is to understand what happens for other
finite-dimensional normed spaces. It turns out that there are a few obstacles to
obtain such generalizations.
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Firstly, our approach is not completely straightforward. In particularly, it is
based on [6, Theorem 2] by Memoli. This inequality provides an upper estimate
of the Euclidean Gromov-Hausdorff distance in terms of the classical Gromov-
Hausdorff distance. The effectiveness of this theorem is based on the richness of
the isometry group Iso(IR") of IR”, that is not the case for other finite-dimensional
normed spaces. Secondly, we might consider some enet ¢ in R"” and try to
approximate it in terms of the Gromov-Hausdorff distance with an ¢'-net ¢’ in
a finite-dimensional normed space X. However, according to paper [7], it holds
dgy(o,0’) = co unless X is isometric to R”, so it is also impossible to transfer
our result to such X using this idea. Summing up, the question whether or not
a subset Y of a finite-dimensional normed space X on a finite Gromov-Hausdorff
distance from X is an e-net in X for some & >0 remains open.

2 Preliminaries

For an arbitrary metric space X, the distance between its points x and y we denote
by |xy|. Let B,(a) ={x € X:|ax| <r} and S,(a) ={x € X:|ax|=r} be the closed ball
and the sphere of radius r centered at the point a, respectively. For an arbitrary
subset A C X, its closure in X is denoted by A. For non-empty subsets A C X and
BC X, wesetd(A,B)=inf{|ab|:ac A,be B}.

Definition 2.1. Let A and B be non-empty subsets of a metric space X. The Hausdorff
distance between A and B is the value

dp(A,B)=inf{r>0:ACB,(B),BCB,(A)}.

Definition 2.2. Let X and Y be metric spaces. If X',Y' are subsets of a metric space Z
such that X' is isometric to X and Y' is isometric to Y, then we call the triple (X',Y’',Z)
a metric realization of the pair (X,Y).

Definition 2.3. The Gromov-Hausdorff distance dgy(X,Y') between two metric spaces
X,Y is the infimum of positive numbers r such that there exists a metric realization
(X',Y',Z) of the pair (X,Y) with dy(X',Y') <r.

Let X and Y be non-empty sets. Recall that any subset ¢ C X xY is called

a relation between X and Y. Denote the set of all non-empty relations between X
and Y by Py(X,Y). We set

mx: XxY—=X, nx(xy)=
my: XxXY—=Y, my(xy)

7

X
y.
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Definition 2.4. A relation R C X XY is called a correspondence if 7wx|gr and ty | are
surjective. In other words, correspondences are multivalued surjective mappings. Denote
the set of all correspondences between X and Y by R(X,Y).

Definition 2.5. Suppose RER(X,Y), and ACX, BCY. We use the following standard
notation:

R(A)={yeY|3xeA: (x,y) ER},
R7Y(B)={xeX|3IyeB: (x,y)eR}.
Definition 2.6. Let X,Y be arbitrary metric spaces. Then for every o € Po(X,Y), the
distortion of o is defined as
diso=sup{ ||lxx'| = lyy/I|: (x.y), (¥',y) €c .
Claim 1 ([2,8]). For arbitrary metric spaces X and Y, the following equality holds:
2dgp(X,Y)=inf{disR:ReR(X,Y)}.

Recall that for any sets X,Y,Z, and relations 01 € Py(X,Y), 02 € Po(Y,Z), the
composition of 07 and 03, denoted by 0,007, is the set of all (x,z) € X x Z for which
there exists y € Y such that (x,y) €0y and (y,z) € 05.

Claim 2 ([2,8]). Let X,Y,Z be metric spaces, Ry € R(X,Y),R, € R(Y,Z). Then
RyoR; € R(X,Z) and the following inequality holds:

diS(Rz ORl) <disRj+disR,.

Claim 3. Given non-empty subsets A and B of a metric space X with dy (A, B)<c,
the set U={(a,b) € AxB:|ab|<c} is a correspondence between A and B such that
disU <2c.

Proof. The inequality dy (A, B) <c implies that for an arbitrary a € A, there exists
b€ B such that |ab| <c. Hence, (a,b) € U and, therefore, the projection of U to A is
surjective. Similarly, the projection of U to B is surjective. Thus, U is a correspon-
dence between A and B.

Given (a,b), (a',b") € U with |ab| <c, |a'b'| < c, we get

||aa"| —|b'|| < |ab|+|a’b'| =2c.

Thus, disU < 2c. O
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Claim 4 ([2,8]). Let X and Y be metric spaces, and the diameter of one of them is
finite. Then

1
dgu(X,Y)> 5 |diam X —diamY/|.

From now on, we suppose that R" is always endowed with the standard Eu-
clidean norm.

Definition 2.7. Denote by Iso(IR") the group of all isometries of R". For arbitrary
non-empty subsets X,Y CIR", the Euclidean Gromov-Hausdorff distance is

deg(X,Y)= inf dg(X,T(Y)).
(X )= ot (X T()

Theorem 2.1 ([6]). Let X,Y CIR" be non-empty compact subsets. Then

(deu(X,Y)) %,

Nl—

dGH(X,Y) < dEH(X,Y) < C;l -M
where M =max{diam(X),diam(Y)} and c}, is a constant that depends only on n.

Corollary 2.1. Let X,Y CR" be non-empty bounded subsets. Then

(deu(X,Y)) %,

(S

dGH(X,Y) S dEH(X,Y) < C;, -M
where M =max{diam(X),diam(Y)} and c}, is a constant that depends only on n.

Proof. Since X and Y are bounded, X and Y are compact. Then the desired in-
equalities for X and Y follow from Theorem 2.1 and equalities

deu(X,Y)=dgu(X,Y), deu(X,Y)=deu(X,Y),
diam X =diamX, diamY =diamY.

The proof is complete. O

3 The main theorem
Now we formulate and prove the main theorem of this paper.

Theorem 3.1. Let ACR", t=sup{r:3B,(x) CR"\ A}. Then dgy(R", A) < oo ifand
only if t < co.
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Proof. Suppose that f<co. Then A isa (t+1)-netin R”. Hence, d(R", A) <t+1<
oo. It follows from the definition of Gromov-Hausdorff distance that

dGH(IRn,A) SdH(Rn,A) <t+1<oo.

Suppose now that dgy(IR"”, A) < co. According to Claim 1, there exists a cor-
respondence R between R” and A with a distortion dis R =c < co. Let us choose
an arbitrary point 2 € A and some point p€ R~ (a).

Let ¢/, be the constant from Corollary 2.1, and set T = +/3cc,. Choose N €N
such that 3TV/'N < %, c<N,c< T+/N.

We set X=Sn(p), X' =XU{p}, Y=R(X), Y =YU{a}. Note that Y C A. The
correspondence R, being restricted to X’ and Y/, generates a correspondence R’
with distortion disR’ <c.

Note that diamX’ =2N. By Claim 4, |diamX'—diamY’| <2dgy(X',Y’). By
Claim 1, it holds 2dgy(X’,Y’") <c. Hence, |diamX'—diamY’| < ¢ and, thus,
diamY’ <2N +c. Therefore, X’ and Y’ are both bounded.

By Corollary 2.1, we obtain

den(X',Y') <\ /max{diam(X"), diam (Y")}-dgr (X', ')}
<c'-V2N+c-ve<c V3Nye=TVN.

It follows from the definition of Euclidean Gromov-Hausdorff distance that there
exists an isometry f: R" —R" such that d (X, f(Y')) < TV/N.
Now construct the relation U C Y’ x X’ in the following way:

U={(y,x):|f(y)x|<TVN,yeY, xeX'}.

According to Claim 3, the inequality di (X, f(Y’)) < T+/N implies that U is a cor-
respondence and disU < 2T+/N. Consider the relation Q=UoR’ C X’ x X'. Since
U and R’ are correspondences, Q is a correspondence by Claim 2. By the same
Claim 2, we have disQ <disU+disR’' <2T+v/N+c.

Choose an arbitrary x € Q!(p). Let us prove that x = p. Suppose x # p. Then
x € X. Take x’ € X such that |xx'| < Tv/N—c and choose some g € Q(x/). By
definition of distortion, ||pq| —|xx’|| <2Tv/N+c. Hence, |pq| <3TVN <& <N.
Since |pu|=N for every u € X, we conclude that g=p. Similarly, (p,x) € Q implies
that x=p. We have proved that Q! (p)=Q(p)={p}. Since R'(p)={a}, it follows
that U(a)={p}.

Define a cone D = Ute]RJB% (m) for some point m € SN (0). Let us prove that
for every cone Tp isometric to D with its vertex in f(a), there exists y€Y such that
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f(y) € Tp. Consider a cone Tp — f(a)+p. Denote its axis by ¢. Consider the point
w=/¢NX. Since dyy (X', f(Y")) <T+/N, there exists y €Y’ such that |wf(y)| <T+/'N.
Since U(a) ={p} and |pw|=N >T+/N, it follows that y #a and y € Y.

Since U(a) = {p} and dis(U) < TV/N, it follows that | f(a)p| < T+/N. Since the
point w+ f(a) —p belongs to the axis of the cone Tp, to show that f(y) € Tp it
suffices to prove that ||f(y) —w— f(a)+p|| < §. By triangle inequality,

1f(y)—w—f(a)+pl <|f(y)wl+|f(a)p| <2TVN< g

Hence, f(y)€Tp. Since f is an isometry, it follows that for every cone Tp isometric
to D with its vertex in a, there exists y € YNTp. Since disR’ <c¢ and Y =R(X), it
follows that ||ya| — N| <c.

Therefore, we have proven the following statement: For an arbitrary point
a € A and an arbitrary cone Tp isometric to D with its vertex in a, there exists
apointa’ € TpN(Bnic(a)\By_c(a))NA.

Suppose now that A is not an e-net in R” for each positive . Let us choose
some ball B,(x) C R"\ A. Without loss of generality, suppose that there exists
a point a€ A such that a€ S, (x). Consider a cone Tp isometric to D with its vertex
at a, whose axis starts at 2 and contains x. Let us initially choose r so large that
the following inclusion holds:

TpN (BN+C(LZ)\BN_C(LZ)) C Br(x).

Therefore, according to the proven statement, we get B,(x)NA # @, a contradic-
tion. ]

Theorem 3.1 cannot be generalized to arbitrary Euclidean normed spaces.

Example 3.1. Consider the space ¢, of all sequences (x1,x2,...) such that y©° ; x7 <
0. It is isometric to its subspace

A={(x1,x3,...) Ely:x1=0}.
However, A is not an e-network in ¢; for every ¢ >0 because
du((g0,...),A) >e.

Remark 3.1. As Example 3.1 shows, the finiteness of the dimension is a crucial
condition in Theorem 3.1. In fact, it is required by [6, Theorem 1], on which
Theorem 2.1 is based.
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