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Abstract. In this paper we prove that the Gromov-Hausdorff distance between
R

n and its subset A is finite if and only if A is an ε-net in R
n for some ε> 0.

For infinite-dimensional Euclidean spaces this is not true. The proof is essen-
tially based on upper estimate of the Euclidean Gromov-Hausdorff distance by
means of the Gromov-Hausdorff distance.
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1 Introduction

This paper is devoted to investigation of geometry of the classical Gromov-Haus-
dorff distance [2–4]. Traditionally, the Gromov-Hausdorff distance is used for
bounded metric spaces, mainly, for compact ones. In the case of non-bounded
metric spaces, this distance is applied to define the pointed Gromov-Hausdorff
convergence, and besides, there were a few attempts to define the corresponding
distance function in this case, see for instance [5]. Since the Gromov-Hausdorff
distance between isometric metric spaces vanishes, it is natural to identify such
spaces in this theory. Thus, the main space for investigating the Gromov-Haus-
dorff distance is the space M of non-empty compact metric spaces considered
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upto isometry, endowed with the Gromov-Hausdorff distance. Here the distance
function is a metric, and this metric is complete, separable, geodesic, etc., see for
details [2, 4].

In [4], Gromov described some geometric properties of the Gromov-Haus-
dorff distance on the space GH of all non-empty metric spaces, not necessarily
bounded, considered up to isometry. It is easy to see that GH is not a set, but
a proper class in terms of von Neumann-Bernays-Gödel set theory. Gromov sug-
gested to consider subclasses consisting of all metric spaces on finite distance
between each other. We called such subclasses clouds. Gromov announced that
the clouds are obviously complete and contractible [4]. He suggested to see that
on the example of the cloud containing R

n. The idea is to consider a mapping of
GH into itself that for each X∈GH, multiplies all distances in X by some real λ>0.
It is easy to see that such mapping takes R

n to an isometric metric space, i.e., R
n

is a fixed point of this mapping. However, the Gromov-Hausdorff distances from
R

n to all other metrics spaces in its cloud are multiplied by λ as well. It remains
to see what happens when λ→0+.

Nevertheless, these “obvious observations” lead to a few questions. To start
with, the clouds are proper classes (B. Nesterov, private conversations); contracti-
bility is a topological notion; so, to speak about contractibility of a cloud, we have
to define a topology on it. However, it is not possible to introduce a topology
on a proper class, because the proper class cannot be an element of any other
class by definition, but each topological space is an element of its own topology.
Bogaty and Tuzhilin [1] developed a convenient language that allows to avoid
the set-theoretic problems. Namely, they introduced an analogue of topology
on so-called set-filtered classes (each set belongs to this family, together with the
class GH) and defined continuous mappings between such classes. At the same
time, the authors of [1] found examples of metric spaces that jump onto infinite
Gromov-Hausdorff distance after multiplying their distance functions on some
λ>0. Thus, the multiplication on such λ does not map the clouds into themselves.
This strange behavior of clouds increased the interest to them, see [1] for details.

In the present paper we continue investigation of the geometry of the stan-
dard (non-pointed) Gromov-Hausdorff distance between non-bounded metric
spaces. It is well-known that each ε-net of a metric space X is on finite Gromov-
Hausdorff distance from X. Is the converse statement true as well? Example 3.1
shows that it is not true even for infinite-dimensional Euclidean spaces. In the
present paper we prove that the converse statement holds for finite-dimensional
Euclidean spaces. A natural question is to understand what happens for other
finite-dimensional normed spaces. It turns out that there are a few obstacles to
obtain such generalizations.
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Firstly, our approach is not completely straightforward. In particularly, it is
based on [6, Theorem 2] by Memoli. This inequality provides an upper estimate
of the Euclidean Gromov-Hausdorff distance in terms of the classical Gromov-
Hausdorff distance. The effectiveness of this theorem is based on the richness of
the isometry group Iso(Rn) of R

n, that is not the case for other finite-dimensional
normed spaces. Secondly, we might consider some ε-net σ in R

n and try to
approximate it in terms of the Gromov-Hausdorff distance with an ε

′-net σ
′ in

a finite-dimensional normed space X. However, according to paper [7], it holds
dGH(σ,σ′) = ∞ unless X is isometric to R

n, so it is also impossible to transfer
our result to such X using this idea. Summing up, the question whether or not
a subset Y of a finite-dimensional normed space X on a finite Gromov-Hausdorff
distance from X is an ε-net in X for some ε>0 remains open.

2 Preliminaries

For an arbitrary metric space X, the distance between its points x and y we denote
by |xy|. Let Br(a)={x∈X : |ax|≤r} and Sr(a)={x∈X : |ax|=r} be the closed ball
and the sphere of radius r centered at the point a, respectively. For an arbitrary
subset A⊂X, its closure in X is denoted by A. For non-empty subsets A⊂X and
B⊂X, we set d(A, B)= inf{|ab| : a∈A,b∈B}.

Definition 2.1. Let A and B be non-empty subsets of a metric space X. The Hausdorff

distance between A and B is the value

dH(A, B)= inf
{

r>0 : A⊂Br(B), B⊂Br(A)
}

.

Definition 2.2. Let X and Y be metric spaces. If X′,Y′ are subsets of a metric space Z

such that X′ is isometric to X and Y′ is isometric to Y, then we call the triple (X′,Y′, Z)
a metric realization of the pair (X,Y).

Definition 2.3. The Gromov-Hausdorff distance dGH(X,Y) between two metric spaces

X,Y is the infimum of positive numbers r such that there exists a metric realization

(X′,Y′, Z) of the pair (X,Y) with dH(X
′,Y′)≤ r.

Let X and Y be non-empty sets. Recall that any subset σ ⊂ X×Y is called
a relation between X and Y. Denote the set of all non-empty relations between X
and Y by P0(X,Y). We set

πX : X×Y→X, πX(x,y)= x,

πY : X×Y→Y, πY(x,y)=y.
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Definition 2.4. A relation R⊂X×Y is called a correspondence if πX|R and πY|R are

surjective. In other words, correspondences are multivalued surjective mappings. Denote

the set of all correspondences between X and Y by R(X,Y).

Definition 2.5. Suppose R∈R(X,Y), and A⊂X, B⊂Y. We use the following standard

notation:

R(A)={y∈Y | ∃x∈A : (x,y)∈R},

R−1(B)={x∈X | ∃y∈B : (x,y)∈R}.

Definition 2.6. Let X,Y be arbitrary metric spaces. Then for every σ ∈P0(X,Y), the

distortion of σ is defined as

disσ=sup
{

∣

∣|xx′|−|yy′|
∣

∣ : (x,y), (x′ ,y′)∈σ

}

.

Claim 1 ([2,8]). For arbitrary metric spaces X and Y, the following equality holds:

2dGH(X,Y)= inf
{

dis R : R∈R(X,Y)
}

.

Recall that for any sets X,Y,Z, and relations σ1 ∈P0(X,Y), σ2 ∈P0(Y, Z), the
composition of σ1 and σ2, denoted by σ2◦σ1, is the set of all (x,z)∈X×Z for which
there exists y∈Y such that (x,y)∈σ1 and (y,z)∈σ2 .

Claim 2 ( [2, 8]). Let X,Y, Z be metric spaces, R1 ∈R(X,Y), R2 ∈R(Y, Z). Then

R2◦R1∈R(X, Z) and the following inequality holds:

dis(R2◦R1)≤disR1+disR2.

Claim 3. Given non-empty subsets A and B of a metric space X with dH(A, B)<c,

the set U={(a,b)∈A×B :|ab|<c} is a correspondence between A and B such that

disU≤2c.

Proof. The inequality dH(A, B)< c implies that for an arbitrary a∈A, there exists

b∈B such that |ab|<c. Hence, (a,b)∈U and, therefore, the projection of U to A is

surjective. Similarly, the projection of U to B is surjective. Thus, U is a correspon-

dence between A and B.

Given (a,b), (a′ ,b′)∈U with |ab|< c, |a′b′|< c, we get

∣

∣|aa′|−|bb′|
∣

∣≤|ab|+|a′b′|=2c.

Thus, disU≤2c.
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Claim 4 ([2,8]). Let X and Y be metric spaces, and the diameter of one of them is

finite. Then

dGH(X,Y)≥ 1

2
|diamX−diamY|.

From now on, we suppose that R
n is always endowed with the standard Eu-

clidean norm.

Definition 2.7. Denote by Iso(Rn) the group of all isometries of R
n. For arbitrary

non-empty subsets X,Y⊂R
n, the Euclidean Gromov-Hausdorff distance is

dEH(X,Y)= inf
T∈Iso(Rn)

dH

(

X, T(Y)
)

.

Theorem 2.1 ([6]). Let X,Y⊂R
n be non-empty compact subsets. Then

dGH(X,Y)≤dEH(X,Y)≤ c′n ·M
1
2 ·
(

dGH(X,Y)
)

1
2 ,

where M=max{diam(X),diam(Y)} and c′n is a constant that depends only on n.

Corollary 2.1. Let X,Y⊂R
n be non-empty bounded subsets. Then

dGH(X,Y)≤dEH(X,Y)≤ c′n ·M
1
2 ·
(

dGH(X,Y)
)

1
2 ,

where M=max{diam(X),diam(Y)} and c′n is a constant that depends only on n.

Proof. Since X and Y are bounded, X and Y are compact. Then the desired in-

equalities for X and Y follow from Theorem 2.1 and equalities

dGH(X,Y)=dGH(X,Y), dEH(X,Y)=dEH(X,Y),

diamX=diamX, diamY=diamY.

The proof is complete.

3 The main theorem

Now we formulate and prove the main theorem of this paper.

Theorem 3.1. Let A⊂R
n, t=sup{r :∃Br(x)⊂R

n\A}. Then dGH(R
n, A)<∞ if and

only if t<∞.
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Proof. Suppose that t<∞. Then A is a (t+1)-net in R
n. Hence, dH(R

n, A)≤t+1<

∞. It follows from the definition of Gromov-Hausdorff distance that

dGH(R
n, A)≤dH(R

n, A)≤ t+1<∞.

Suppose now that dGH(R
n, A)<∞. According to Claim 1, there exists a cor-

respondence R between R
n and A with a distortion dis R= c<∞. Let us choose

an arbitrary point a∈A and some point p∈R−1(a).
Let c′n be the constant from Corollary 2.1, and set T =

√
3cc′n. Choose N ∈N

such that 3T
√

N<
N
2 , c<N, c<T

√
N.

We set X=SN(p), X′=X∪{p}, Y=R(X), Y′=Y∪{a}. Note that Y⊂ A. The

correspondence R, being restricted to X′ and Y′, generates a correspondence R′

with distortion disR′≤ c.

Note that diamX′ = 2N. By Claim 4, |diamX′−diamY′| ≤ 2dGH(X
′,Y′). By

Claim 1, it holds 2dGH(X
′,Y′) ≤ c. Hence, |diamX′−diamY′| ≤ c and, thus,

diamY′≤2N+c. Therefore, X′ and Y′ are both bounded.

By Corollary 2.1, we obtain

dEH(X
′ ,Y′)≤ c′n ·

√

max{diam(X′),diam(Y′)}·dGH(X
′ ,Y′)

1
2

≤ c′n ·
√

2N+c·
√

c< c′n
√

3N
√

c=T
√

N.

It follows from the definition of Euclidean Gromov-Hausdorff distance that there

exists an isometry f : R
n→R

n such that dH(X
′ , f (Y′))<T

√
N.

Now construct the relation U⊂Y′×X′ in the following way:

U=
{

(y, x) : | f (y)x|<T
√

N, y∈Y′, x∈X′}.

According to Claim 3, the inequality dH(X
′ , f (Y′))<T

√
N implies that U is a cor-

respondence and disU≤2T
√

N. Consider the relation Q=U◦R′⊂X′×X′. Since

U and R′ are correspondences, Q is a correspondence by Claim 2. By the same

Claim 2, we have disQ≤disU+disR′≤2T
√

N+c.

Choose an arbitrary x∈Q−1(p). Let us prove that x= p. Suppose x 6= p. Then

x ∈ X. Take x′ ∈ X such that |xx′|< T
√

N−c and choose some q ∈ Q(x′). By

definition of distortion, ||pq|−|xx′|| ≤ 2T
√

N+c. Hence, |pq|< 3T
√

N <
N
2 < N.

Since |pu|=N for every u∈X, we conclude that q=p. Similarly, (p, x)∈Q implies

that x=p. We have proved that Q−1(p)=Q(p)={p}. Since R′(p)={a}, it follows

that U(a)={p}.

Define a cone D=∪t∈R+tB N
2
(m) for some point m∈SN(0). Let us prove that

for every cone TD isometric to D with its vertex in f (a), there exists y∈Y such that
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f (y)∈TD . Consider a cone TD− f (a)+p. Denote its axis by ℓ. Consider the point

w=ℓ∩X. Since dH(X
′ , f (Y′))≤T

√
N, there exists y∈Y′ such that |w f (y)|≤T

√
N.

Since U(a)={p} and |pw|=N>T
√

N, it follows that y 6= a and y∈Y.

Since U(a)={p} and dis(U)<T
√

N, it follows that | f (a)p|<T
√

N. Since the

point w+ f (a)−p belongs to the axis of the cone TD, to show that f (y) ∈ TD it

suffices to prove that ‖ f (y)−w− f (a)+p‖≤ N
2 . By triangle inequality,

‖ f (y)−w− f (a)+p‖≤| f (y)w|+| f (a)p|<2T
√

N<
N

2
.

Hence, f (y)∈TD . Since f is an isometry, it follows that for every cone TD isometric

to D with its vertex in a, there exists y∈Y∩TD . Since disR′≤ c and Y=R(X), it

follows that ||ya|−N|≤ c.

Therefore, we have proven the following statement: For an arbitrary point

a ∈ A and an arbitrary cone TD isometric to D with its vertex in a, there exists

a point a′∈TD∩(BN+c(a)\BN−c(a))∩A.

Suppose now that A is not an ε-net in R
n for each positive ε. Let us choose

some ball Br(x)⊂ R
n\A. Without loss of generality, suppose that there exists

a point a∈A such that a∈Sr(x). Consider a cone TD isometric to D with its vertex

at a, whose axis starts at a and contains x. Let us initially choose r so large that

the following inclusion holds:

TD∩
(

BN+c(a)\BN−c(a)
)

⊂Br(x).

Therefore, according to the proven statement, we get Br(x)∩A 6=∅, a contradic-

tion.

Theorem 3.1 cannot be generalized to arbitrary Euclidean normed spaces.

Example 3.1. Consider the space ℓ2 of all sequences (x1,x2,. . .) such that ∑
∞
i=1 x2

i <

∞. It is isometric to its subspace

A=
{

(x1, x2, . . .)∈ℓ2 : x1=0
}

.

However, A is not an ε-network in ℓ2 for every ε>0 because

dH

(

(ε,0, . . .), A
)

≥ ε.

Remark 3.1. As Example 3.1 shows, the finiteness of the dimension is a crucial

condition in Theorem 3.1. In fact, it is required by [6, Theorem 1], on which

Theorem 2.1 is based.
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1999.

[5] D. A. Herron, Gromov-Hausdorff distance for pointed metric spaces, J. Anal. 24(1) (2016),

1–38.

[6] F. Memoli, Gromov-Hausdorff distances in Euclidean spaces, in: IEEE Computer Society

Conference on Computer Vision and Pattern Recognition Workshops, (2008), 1–8.

[7] I. N. Mikhailov, Gromov-Hausdorff distances between normed spaces, arXiv:2407.01388,

2024 (in print).

[8] A. A. Tuzhilin, Lectures on Hausdorff and Gromov-Hausdorff distance geometry, arXiv:

2012.00756, 2019.


