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Abstract. All complex 3-dimensional nilalgebras were described. As a corol-
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1 Introduction

An element x is nil, if there exists a number n, such that for each k≥ n we have
xk=0†. An algebra is called a nilalgebra if each element is nil. The class of nilalge-
bras plays an important role in the ring theory. So, Köthe’s problem is one of the
old problems in ring and module theory that has not yet been solved. A problem
of the existence of simple associative nil rings was actualized by Kaplansky and
successfully solved by Smoktunowicz [15]. Another famous problem was posted
by Albert: Is every finite-dimensional (commutative) power associative nilalge-
bra solvable? It is still open, but it was solved in some particular cases [14]. In
the present note, we give a positive answer to the problem of Albert for non-
anticommutative 3-dimensional algebras. Let us note, that in the anticommu-
tative case, the problem of Albert does not make sense: each anticommutative
algebra is nilalgebra with nilindex 2 and in almost all dimensions there are sim-
ple Lie algebras, that are not solvable. On the other hand, for each n>3, Correa
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and Hentzel constructed a non-(anti)commutative n-dimensional non-solvable
nilalgebra [3]. To do it, we obtain the full classification of complex 3-dimensional
nilalgebras and as a result, we have a geometric classification and the description
of all degenerations in the variety of complex 3-dimensional nilalgebras. In par-
ticular, we proved that this variety of algebras has two rigid algebras. Let us note,
that the classification of 4-dimensional commutative nilalgebras is given in [4]. It
is known that each right Leibniz algebra (i.e., an algebra satisfying the identity
x(yz)=(xy)z+y(xz); about Leibniz algebras see, for example, [11] and references
therein) satisfies the identity x2x=0. Hence, the variety of symmetric Leibniz al-
gebras (i.e., left and right Leibniz algebras) gives a subvariety in the variety of
nilalgebras. Thanks to [1], the intersection of right mono Leibniz (i.e. algebras
where each one-generated subalgebra is a right Leibniz algebra) and left mono
Leibniz algebras gives the variety of nilalgebras with nilindex 3. As one more
corollary from our result, we have the algebraic and geometric classification of
3-dimensional symmetric mono Leibniz algebras.

2 The algebraic classification of 3-dimensional

nilalgebras

2.1 Nilalgebras with nilindex 3

By identity x3=0 we mean the system of two identities

x2x=0 and xx2=0.

Linearizing them, we obtain a pair of useful identities

(xy+yx)x=−x2y and x(xy+yx)=−yx2. (2.1)

The full linearization gives the following two identities:

∑
σ∈S3

(xσ(1)xσ(2))xσ(3)=0 and ∑
σ∈S3

xσ(1)(xσ(2)xσ(3))=0.

We aim to classify all complex 3-dimensional algebras A satisfying x3 = 0.
Obviously, each anticommutative algebra has this property. These algebras were
classified in [7]. Hence, we will consider only non-anticommutative cases, i.e.
algebras where there is an element a, such that a2 6=0. It is easy to see, that a and
a2 are linearly independent and (2.1) gives a2a2 = 0. Consider a basis {a,a2,b} of
the algebra A, then we have the following statement.
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Lemma 2.1. For the algebra A with a basis {a,a2,b} there are the following three cases:

(T0) : ba=0, (Ta) : ba= a, (Tb) : ba=b.

Proof. Let ba= λa+µa2+νb. Suppose first that ν 6= 0. By using the substitution
a
ν 7→ a, we can suppose that ν=1. Let

b′=b+λa+(λ+µ)a2 ,

then

b′a=
(

b+λa+(λ+µ)a2
)

a=λa+µa2+b+λa2=b′.

Thus, for ν 6=0 the algebra A by substitution b′ 7→ b is of type (Tb). Let now ν=0.

Denote b′=−µa+b, then

b′a=−µa2+λa+µa2 =λa.

Thus, for λ = 0 the algebra A by the substitution b′ 7→ b is of type (T0), and for

λ 6=0 by the substitution b′
λ 7→b to type (Ta).

2.1.1 Commutative nilalgebras with nilindex 3

Lemma 2.2. If the algebra A is commutative, then in some basis {a,a2,b} it is determined

by one of the multiplication tables

C0,0 : ab= a2b=0, b2=0,

C0,a2 : ab= a2b=0, b2= a2.

Proof. Using the identity (2.1) and commutativity, we have

a2b=−2(ba)a, b2a=−2(ab)b.

Hence, we have the following relations in the three cases considered:

(T0) :

{

a2b=0,

b2a=0,
(Ta) :

{

a2b=−2a2,

b2a=−2a,
(Tb) :

{

a2b=−2b,

b2a=−2b2.

It remains to determine b2 in each of the three cases. Let us suppose that b2 =
λa+µa2+νb.

Case (T0). First, b2a= 0. On the other hand, b2a=λa2. Therefore, λ= 0 and

b2 = µa2+νb. Further, b2b = 0 and b2b= νb2 = νµa2+ν2b. So ν= 0 and b2 = µa2.

Thus, we get two cases: either b2=0, or (after substituting b√
µ 7→ b) b2= a2. So, in

this case we have two algebras: C0,0 and C0,a2 .
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Case (Ta). First note that b2a =−2a. On the other hand, b2a = λa2+νa. So

b2=µa2−2b. Further, 0=b2b=µa2b−2b2=−2µa2−2µa2+4b. Thus, the case (Ta)
is not realized in commutative algebras.

Case (Tb). We have b2a=λa2+νb and b2a=−2(λa+µa2+νb). Then λ=2µ=
3ν=0, i.e. b2=0. Further, if x=a2+b, then x2=2a2b=−4b, i.e. 0=x2x=8b. Thus,

the case (Tb) is neither realized in commutative algebras.

It is easy to check that dimAnnC0,0=2 and dimAnnC0,a2 =1. Hence, they are

non-isomorphic.

2.1.2 Noncommutative nilalgebras with nilindex 3

Let us consider the algebra A+ with the multiplication x·y= 1
2(xy+yx). It is easy

to see, that A+ is commutative and satisfies the identities x3=0.

Lemma 2.3. If A be a noncommutative nilalgebra with nilindex 3 and A+ has type C0,0

or C0,a2 regarding a basis {a,a2,b}, then it satisfies:

(1) b2=0 or b2= a2,

(2) ba=−ab,

(3) a2a2= a2b=ba2=0.

Proof. It is easy to see, that a·a= a2 and b2 = b·b= c, where c= 0 or c= a2. From

a·b = 0 follows ab =−ba. The relation (2.1) gives a2b=−2(a·b)a= 0 and on the

other hand, we have a2b+ba2 =2(a·a)·b=0, then ba2 =−a2b=0. In the end, we

obtain a2a2=(a·a)·(a·a)=0.

To summarize, for a description of the multiplication table of A in the basis
{a,a2,b}, we have to determine the value of ab. Let ab=λa+µa2+νb.

Let us define by Nc,d a 3-dimensional algebra with a basis {a,a2,b} and the
multiplication table given below

aa= a2 , ab=−ba= c, b2=d.

Proposition 2.1. If A+∼=C0,0, then A is isomorphic to C0,0, Na,0, Nb,0, or Na2,0.

Proof. Let A be an algebra with a basis {a,a2,b} satisfying the following relation:

−ba= ab=λa+µa2+νb,
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and A′ be an algebra with the basis {a′,a′2,b′} and the following relation:

−b′a′= a′b′=λ′a′+µ′a′2+ν′b′.

We suppose, that A′∼=A and let

ξ(a′)=α1a+β1a2+γ1b,

ξ(b′)=α2a+β2a2+γ2b.

Then,

0= ξ(0)= ξ(b′2)=(ξ(b′))2 =α2
2a2 and α2=0.

By a similar way, ξ(a′2)=(ξ(a′))2=α2
1a2.

It is easy to see that

ξ(a′)ξ(b′)=(α1a+β1a2+γ1b)(β2a2+γ2b)

=α1γ2ab=α1γ2(λa+µa2+νb).

On the other hand,

ξ(a′b′)= ξ(λ′a′+µ′a′2+ν′b′)

=λ′(α1a+β1a2+γ1b)+µ′α2
1a2+ν′(β2a2+γ2b).

The last two relations give the following system of equalities:

α1γ2λ=λ′α1,

α1γ2µ=λ′β1+µ′α2
1+ν′β2,

α1γ2ν=λ′γ1+ν′γ2.

Since, α2 = 0 and dimImξ = 3, then α1γ2 6= 0, otherwise ξ(a′2), ξ(b′)∈ 〈a2〉. Then

we have

λ′=γ2λ, µ′α2
1=γ2(α1µ−β1λ)−β2(α1ν−γ1λ), ν′=α1ν−γ1λ.

(1) If λ 6=0, then by choosing γ2=
1
λ , γ1=

α1ν
λ , and β1=

α1µ
λ − β2

γ2λ(α1ν−γ1λ), we

have λ′=1, ν′=0, and µ′=0. Hence, we have the algebra Na′,0 with the basis

{a′,a′2,b′}.

(2) If λ=0, then

λ′=0, µ′α1=γ2µ−β2ν, ν′=α1ν.
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(a) If ν 6=0, then by choosing α1=
1
ν and β2=

γ2µ
ν , we have ν′=1 and µ′=0.

This case gives the algebra Nb′,0.

(b) If ν=0, then

λ′=0, µ′α1=γ2µ, ν′=0.

If µ=0 we have the algebra C0,0; if µ 6=0 and α1=γ2µ, we have µ′=1.

The last gives the algebra Na′2,0.

The proof is complete.

Proposition 2.2. If A+∼=C0,a2 , then A is isomorphic to Nb,a2 or Nαa2,a2 , for an element

α∈C.

Proof. We will follow the ideas from the previous statement for b2= a2. Hence,

−ba= ab=λa+µa2+νb, b2= a2,

−b′a′= a′b′=λ′a′+µ′a′2+ν′b′, b′2= a′2,

ξ(a′)=α1a+β1a2+γ1b,

ξ(b′)=α2a+β2a2+γ2b.

Then,

ξ(b′2)=
(

ξ(b′)
)2
=
(

α2
2+γ2

2

)

a2,

ξ(a′2)=
(

ξ(a′)
)2
=
(

α2
1+γ2

1

)

a2.

Let us note that b′2= a′2 6=0, then α2
2+γ2

2=α2
1+γ2

1 6=0. It follows,

ξ(a′)ξ(b′)=(α1a+β1a2+γ1b)(α2a+β2a2+γ2b)

=(α1α2+γ1γ2)a
2+(α1γ2−α2γ1)ab

=(α1α2+γ1γ2)a
2+(α1γ2−α2γ1)(λa+µa2+νb),

ξ(a′b′)= ξ(λ′a′+µ′a′2+ν′b′)

=λ′(α1a+β1a2+γ1b)+µ′(α2
1+γ2

1)a
2+ν′(α2a+β2a2+γ2b).

The last two relations give the following system of equalities:

(α1γ2−α2γ1)λ=λ′α1+ν′α2,

α1α2+γ1γ2+(α1γ2−α2γ1)µ=λ′β1+µ′(α2
1+γ2

1

)

+ν′β2,

(α1γ2−α2γ1)ν=λ′γ1+ν′γ2.
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Since elements from a basis are linearly independent, we have that ∆=α1γ2−
α2γ1 6=0, otherwise, there are k1,k2∈C such that ξ(k1a′+k2b′),ξ(a′2)∈〈a2〉. Hence,

we have the following relations, that we denote as (⋆):

λ′=γ2λ−α2ν,

∆µ=λ′β1+ν′β2+µ′(α2
1+γ2

1

)

−(α1α2+γ1γ2),

ν′=α1ν−γ1λ.

(1) If λ = ν = 0, then λ′ = ν′ = 0. Hence, for µ′ = 0 we have the commutative

algebra C0,a2 , for µ′ 6= 0 — noncommutative algebras Nαa2,a2 , where α 6= 0.

We can joint these cases in one family Nαa2 ,a2 .

(2) If λ 6=0, then by choosing α2=1, γ2=
ν
λ , we have λ′=0. Hence,

λ′=0, ∆µ=µ′(α2
1+γ2

1

)

+ν′β2−(α1α2+γ1γ2), ν′=−γ1λ+α1ν.

Since, ∆λ=(α1γ2−α2γ1)λ=α1ν−γ1λ, then ν′=∆λ 6=0. If β2=
∆µ+(α1α2+γ1γ2)

∆λ ,

then µ′ = 0. Hence, in this case N is isomorphic to one algebra from the

family Nαb′,a′2. It is clear that α 6=0 and for different α 6=0, these algebras are

isomorphic. Next, for a′′= a′
α and b′′= b′

α , we have Nb′′,a′′2.

(3) By symmetry on a and b in relations (⋆), we have to consider only the case

λ=0,ν 6=0. Hence, be choosing some suitable nonzero α1 and α2, we obtain

the previous case.

The proof is complete.

Proposition 2.3. Algebras C0,0, Na,0, Nb,0, Na2,0, Nb,a2 and Nαa2,a2 are non-isomorphic,

except Nαa2,a2
∼=N−αa2,a2 .

Proof. First, commutative algebras are not isomorphic to noncommutative. Sec-

ond, if A+ 6∼=B+, then A 6∼=B. Third, N2
a,0=〈a,a2〉, N2

b,0=〈a2,b〉, N2
a2,0

=〈a2〉. Hence,

Na2,0 6∼=Na,0 and Na2,0 6∼=Nb,0. Since, (N2
a,0)

2 6=0 and (N2
b,0)

2=0, we have Na,0 6∼=Nb,0.

Similarly, Nαa2,a2 6∼=Nb,a2 .

Let us consider two isomorphic algebras N=Nλa2,a2 and N′=Nµa′2,a′2. Let ξ be

an isomorphism between them such that

ξ(a′)=α1a+β1a2+γ1b,

ξ(b′)=α2a+β2a2+γ2b.
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It follows that α2
2+γ2

2=α2
1+γ2

1 6=0. Hence,

ξ(a′)ξ(b′)=(α1a+β1a2+γ1b)(α2a+β2a2+γ2b)

=
(

α1α2+γ1γ2+λ(α1γ2−α2γ1)
)

a2,

ξ(b′)ξ(a′)=
(

α1α2+γ1γ2−λ(α1γ2−α2γ1)
)

a2,

ξ(a′b′)= ξ
(

µ(a′)2
)

=µ
(

α2
1+γ2

1

)

a2.

The last relations give the following system of equalities:

α1α2+γ1γ2=0, λ(α1γ2−α2γ1)=µ
(

α2
1+γ2

1

)

, α2
2+γ2

2=α2
1+γ2

1 6=0.

(1) If α1=0, then γ1 6=0 and γ2=0. It follows that α2=±γ1 and µ=±λ.

(2) If α1 6= 0, then α2 =−γ1γ2
α1

and
γ2

2

α2
1

(γ2
1+α2

1)= α2
1+γ2

1. That gives α2
1 =γ2

2 and

α2
2=γ2

1. Hence, α1=±γ2 and α2=∓γ1, i.e. µ=±λ.

The proof is complete.

2.2 Nilalgebras with nilindex 4

Let us now consider complex 3-dimensional nilalgebras with nilindex 4. It means,
that the algebra A has an element a, such that a2 6= 0; at least one element from
aa2 and a2a is nonzero; and ak = 0 for each k> 3. Let us suppose that a2a 6= 0. If
a2a∈〈a,a2〉, then a2a=αa+βa2 and

0=(a2a)a=αa2+βa2a=αβa+(α+β2)a2,

i.e. α=β=0.

We can choose the basis {a,a2,a2a} and define the multiplication on this alge-
bra. Let aa2 = γ1a+γ2a2+γ3a2a, then 0= (aa2)a = γ1a2+γ2a2a and γ1 = γ2 = 0.
It is easy to see that A is nilpotent. The case a2a= 0 and aa2 6= 0 is similar. The
classification of complex 3-dimensional nilpotent algebras is given in [6]. Hence,
A is isomorphic to one of the following algebras:

N1 : e1e1= e2 e2e1= e3,

Nα
2 : e1e1= e2 e1e2= e3 e2e1=αe3.
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2.3 Nilalgebras with nilindex 5

Let us now consider complex 3-dimensional nilalgebras with nilindex 5. It means,
that the algebra A has an element a, such that a2 6= 0; at least one from elements
a2a2, (aa2)a, a(aa2), (a2a)a and a(a2a) is nonzero; and ak =0 for each k>4.

(1) Let us suppose that a2a2 6= 0. Following the same idea as in the Subsec-
tion 2.2, we have that a2a2 6∈〈a,a2〉, then we can choose the basis {a,a2,a2a2}
and define the multiplication on this algebra. It will be a nilpotent algebra.

(2) If (aa2)a 6= 0, then aa2 6= 0, and we can choose the basis {a,a2,aa2}. Hence,
(aa2)a=αa+βa2+γaa2, then

0=
(

((aa2)a)a2
)

a=α(aa2)a,

0=
(

a((aa2)a)
)

a=αa2a+β(aa2)a,

0=
(

(aa2)a
)

a=αa2+βa2a+γ(aa2)a.

The last gives α=β=γ=0 and this case can not be realized.

(3) If one of a(aa2), (a2a)a or a(a2a) is not equal to zero, we will apply a similar
idea and can obtain that the case can not be realized.

The classification of complex 3-dimensional nilpotent algebras is given in [6].
Hence, A is isomorphic to one of the following algebras:

N1 : e1e1= e2 e2e2= e3,

N2 : e1e1= e2 e2e1= e3 e2e2= e3.

2.4 Nilalgebras with nilindex k>5

Let us now consider complex 3-dimensional nilalgebras with nilindex k > 5. It
means, that algebra A has an element a, such that ak 6= 0. It means, that there is
an arrangement of brackets in the non-associative word ak such that the result is
nonzero. For this nonzero arrangement of brackets, we can write ak as one of the
following forms:

ak =
(

(aa)(aa)
)

Tak1 . . .Takm with k1+···+km+4= k,

ak =
(

(aa)a
)

Tak1 . . .Takm with k1+···+km+3= k,
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or

ak =
(

a(aa)
)

Tak1 . . .Takm with k1+···+km+3= k,

where Tx is a left or right multiplication on the element x. Following the idea from
the previous subsection case (2), we can choose a basis of A as {a,a2,Q}, where
Q ∈ {(aa)(aa),(aa)a,a(aa)} and applying the similar arguments, we obtain that
the present case can not be realized. Since there are no 3-dimensional nilalgebras
with nilindex k>5.

2.5 The classification theorem

The classification of 3-dimensional nilalgebras with nilindex 2 (=anticommuta-
tive algebras) is given in [7]. The classification of 3-dimensional nilalgebras with
nilindex 3, 4, and 5 is given in the previous subsections. Hence, we are ready to
summarize these results in the following theorem.

Theorem 2.1. Let N be a complex 3-dimensional nilalgebra. Then N is isomorphic to an

algebra from the following list:

g1 : e2e3= e1 e3e2=−e1,

g2 : e1e3= e1 e2e3= e2 e3e1=−e1 e3e2=−e2,

gα
3 : e1e3= e1+e2 e2e3=αe2 e3e1=−e1−e2 e3e2=−αe2,

g4 : e1e2= e3 e1e3=−e2 e2e3= e1

e2e1=−e3 e3e1= e2 e3e2=−e1,

Aα
1 : e1e2= e3 e1e3= e1+e3 e2e3=αe2

e2e1=−e3 e3e1=−e1−e3 e3e2=−αe2,

A2 : e1e2= e1 e2e3= e2 e2e1=−e1 e3e2=−e2,

A3 : e1e2= e3 e1e3= e1 e2e3= e2

e2e1=−e3 e3e1=−e1 e3e2=−e2,

N1 : e1e1= e2,

N2 : e1e1= e2 e1e3= e1 e3e1=−e1,

N3 : e1e1= e2 e1e3= e3 e3e1=−e3,

N4 : e1e1= e2 e1e3= e2 e3e1=−e2,

N5 : e1e1= e2 e1e3= e3 e3e1=−e3 e3e3= e2,

N α
6 : e1e1= e2 e1e3=αe2 e3e1=−αe2 e3e3= e2,
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N1 : e1e1= e2 e2e1= e3,

Nα
2 : e1e1= e2 e1e2= e3 e2e1=αe3,

N1 : e1e1= e2 e2e2= e3,

N2 : e1e1= e2 e2e1= e3 e2e2= e3.

All algebras are non-isomorphic, except gα
3
∼=gα−1

3 , Aα
1
∼=Aα−1

1 , and N α
6
∼=N−α

6 .

Let us recall the Albert’s problem: Is every finite-dimensional (commutative)
power associative nilalgebra solvable? For each n > 3, Correa and Hentzel [3]
constructed a non-(anti)commutative n-dimensional non-solvable nilalgebra. It
is easy to see, that if a 2-dimensional algebra is a nilalgebra, then it should be
commutative or anticommutative. Hence, Theorem 2.1 gives the following corol-
lary.

Corollary 2.1. Albert’s problem is true for all non-anticommutative 3-dimensional alge-

bras.

Remark 2.1. The famous Nagata-Higman-Dubnov-Ivanov’s theorem says that

each associative nilalgebra is nilpotent. It is easy to see, that the algebra N3 is

a non-nilpotent nilalgebra, that satisfies identities of the following type:

α1(xy)z+α2(yx)z+α3(xz)y+α4(zy)x+α5(yz)x+α6(zx)y

+α7z(xy)+α8z(yx)+α9y(xz)+α10x(zy)

+(−α1+α2+α7−α8−α4+α5+α10)x(yz)

+(−α1+α2+α7−α8−α3+α6+α9)y(zx)=0.

Hence, each variety defined by an identity of the type given above does not have

an analog of Nagata-Higman-Dubnov-Ivanov’s theorem. In particular, the fol-

lowing identities have the above-given type:

(1) (Right) Leibniz: (xy)z=(xz)y+x(yz).

(2) Reverse (right) Leibniz: (xy)z=(zy)x+y(zx).

(3) Weakly associative: (xy)z−x(yz)+(yz)x−y(zx)−(yx)z+y(xz)=0.

(4) 2-step Jordan nilpotent: (x ·y)·z=(xy)z+(yx)z+z(xy)+z(yx)=0.

(5) Almost anticommutative: (xy)z+(yx)z=0.
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Thanks to [1], the intersection of right mono Leibniz (i.e. algebras where each
one-generated subalgebra is a right Leibniz algebra) and left mono Leibniz alge-
bras gives the variety of nilalgebras with nilindex 3. Hence, we have the following
corollary.

Corollary 2.2. The algebraic classification of symmetric mono Leibniz algebras is given

in Theorem 2.1. Namely, it consists from algebras of gi, Ai, or Ni type.

3 Degenerations of 3-dimensional nilalgebras

The study of varieties of non-associative algebras from a geometric point of view
has a long story (see, [5–10, 12] and references therein). The geometric classifica-
tion of algebras from a certain variety is based on the notion of degeneration, that
is a “dual” notion to deformations [2, 13].

3.1 Definitions and notation

Given an n-dimensional vector space V, the set Hom(V⊗V,V)∼=V
∗⊗V

∗⊗V is
a vector space of dimension n3. This space has the structure of the affine variety

Cn3
. Indeed, let us fix a basis e1,. . .,en of V. Then any µ∈Hom(V⊗V,V) is deter-

mined by n3 structure constants ck
ij ∈C such that µ(ei⊗ej)=∑

n
k=1ck

ijek. A subset

of Hom(V⊗V,V) is Zariski-closed if it can be defined by a set of polynomial
equations in the variables ck

ij (1≤ i, j,k≤n).

Let T be a set of polynomial identities. The set of algebra structures on V sat-
isfying polynomial identities from T forms a Zariski-closed subset of the variety
Hom(V⊗V,V). We denote this subset by L(T). The general linear group GL(V)
acts on L(T) by conjugations

(g∗µ)(x⊗y)= gµ(g−1 x⊗g−1y)

for x,y∈V, µ∈L(T)⊂Hom(V⊗V,V) and g∈GL(V). Thus, L(T) is decomposed
into GL(V)-orbits that correspond to the isomorphism classes of algebras. Let

O(µ) denote the orbits of µ∈L(T) under the action of GL(V) and O(µ) denote
the Zariski closure of O(µ).

Let A and B be two n-dimensional algebras satisfying the identities from T,
and let µ,λ ∈L(T) represent A and B, respectively. We say that A degenerates

to B and write A→B if λ∈O(µ). Note that in this case we have O(λ)⊂O(µ).
Hence, the definition of degeneration does not depend on the choice of µ and λ.



I. Kaygorodov and O. Shashkov / Commun. Math. Res., 41 (2025), pp. 9-24 21

If A 6∼=B, then the assertion A→B is called a proper degeneration. We write A 6→B

if λ 6∈O(µ).
Let A be represented by µ∈L(T). Then A is rigid in L(T) if O(µ) is an open

subset of L(T). Recall that a subset of a variety is called irreducible if it cannot be
represented as a union of two non-trivial closed subsets. A maximal irreducible
closed subset of a variety is called an irreducible component. It is well known
that any affine variety can be represented as a finite union of its irreducible com-

ponents in a unique way. The algebra A is rigid in L(T) if and only if O(µ) is an
irreducible component of L(T).

3.2 Method of the description of degenerations of algebras

In the present work we use the methods applied to Lie algebras in [5]. First of
all, if A →B and A 6∼= B, then Der(A)<Der(B), where Der(A) is the algebra of
derivations of A. We compute the dimensions of algebras of derivations and
check the assertion A→B only for such A and B that Der(A)<Der(B).

To prove degenerations, we construct families of matrices parameterized by t.
Namely, let A and B be two algebras represented by the structures µ and λ from
L(T) respectively. Let e1,. . .,en be a basis of V and ck

ij (1≤i, j,k≤n) be the structure

constants of λ in this basis. If there exist a
j
i(t)∈C (1≤ i, j≤n, t∈C∗) such that Et

i =

∑
n
j=1a

j
i(t)ej (1≤i≤n) form a basis of V for any t∈C∗, and the structure constants of

µ in the basis Et
1,. . .,Et

n are such rational functions ck
ij(t)∈C[t] that ck

ij(0)=ck
ij, then

A→B. In this case Et
1,. . .,Et

n is called a parameterized basis for A→B. In case of

Et
1,Et

2,. . .,Et
n is a parametric basis for A→B, it will be denoted by A

(Et
1,Et

2,...,Et
n)−−−−−−−→B.

To simplify our equations, we will use the notation Ai=〈ei,. . .,en〉 (i=1,.. . ,n) and
write simply Ap Aq⊂Ar instead of ck

ij=0 (i≥ p, j≥q, k< r).

Let A(∗) := {A(α)}α∈I be a series of algebras, and let B be another alge-
bra. Suppose that for α ∈ I, A(α) is represented by the structure µ(α) ∈ L(T)
and B is represented by the structure λ ∈ L(T). Then we say that A(∗)→ B if

λ∈{O(µ(α))}α∈I , and A(∗) 6→B if λ 6∈{O(µ(α))}α∈I .
Let A(∗), B, µ(α) (α∈ I) and λ be as above. To prove A(∗)→B it is enough

to construct a family of pairs ( f (t),g(t)) parameterized by t∈C∗, where f (t)∈ I
and g(t)∈GL(V). Namely, let e1,. . .,en be a basis of V and ck

ij (1≤ i, j,k≤n) be the

structure constants of λ in this basis. If we construct a
j
i : C

∗→C (1≤ i, j≤n) and

f :C∗→ I such that Et
i =∑

n
j=1a

j
i(t)ej (1≤ i≤n) form a basis of V for any t∈C∗, and

the structure constants of µ( f (t)) in the basis Et
1,. . .,Et

n are such rational functions
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ck
ij(t)∈C[t] that ck

ij(0)=ck
ij, then A(∗)→B. In this case Et

1,. . .,Et
n and f (t) are called

a parameterized basis and a parameterized index for A(∗)→B, respectively.
We now explain how to prove A(∗) 6→B. Note that if Der(A(α))>Der(B) for

all α∈ I then A(∗) 6→B. One can also use the following lemma, whose proof is the
same as the proof of [5, Lemma 1.5].

Lemma 3.1. Let B be a Borel subgroup of GL(V) and R⊂L(T) be a B-stable closed

subset. If A(∗)→B and for any α∈ I the algebra A(α) can be represented by a structure

µ(α)∈R, then there is λ∈R representing B.

3.3 Degeneration of 3-dimensional nilalgebras

Theorem 3.1. The graph of degenerations of algebras from the variety of 3-dimensional

nilalgebras is presented below (the number at the left-hand of the figure means the dimen-

sion of the geometric variety of the algebra from the same level). In particular, the variety

of 3-dimensional nilalgebras has dimension 9, two rigid algebra N5 and N2, and three

irreducible components described below

O(Aα
1)=

{

Aα
1 , A2, A3, g1, g2, gα

3 , g4, C
3
}

,

O(N5)=
{

N1, N2, N3, N4, N5, N α
6 , g1, g0

3, C
3
}

,

O(N2)=
{

N1, N1, Nα
2 , N1, N4, N α

6 , g1, C
3
}

.

In particular, the variety of 3-dimensional nilalgebras with nilindex 3 has dimension 9,

one rigid algebra N5, and two irreducible components defined by Aα
1 and N5; the variety

of 3-dimensional nilalgebras with nilindex 4 has dimension 9, one rigid algebra N5, and

three irreducible components defined by Aα
1 , Nα

2 , and N5.

Proof. The subgraph of degenerations between anticommutative algebras, i.e., al-

gebras Ai and gi, is given in [7]. The subgraph of degenerations between nilpo-

tent algebras, i.e., algebras g1, N1, N4, N β
6 , N1, Nα

2 , N1, and N2, is given in [6].

We aim to complete these subgraphs to the full graph of degenerations of 3-

dimensional nilalgebras. The list of primary degenerations is given below

N5

( 1
t e3, 1

t2
e2+te3,−e1)−−−−−−−−−−→N2, N5

(2t(β+t)e1+2t2(β+t)e3,4t2(β+t)e3,−2t(β+t)2e2+2t(β+t)e3)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→N β
6 ,

N2
(e1−e3,e3,te3)−−−−−−−→N3, N3

(te1,t2e3,−te2+te3)−−−−−−−−−−→N4, N3
(− 1

t e2+e3, 1
t e2,−te1)−−−−−−−−−−−→g0

3.

The list of primary non-degenerations is given below
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8

7

6

5

4

3

0

Aα
1

A2

A3

g1 g2

gα
3

g4

N1

N4 N β
6

N3

N2

N5 N2

N1

N1Nα
2

(∗) β=
i(α−1)

α+1

C3

α=1

β=0α=−1 (∗)

α=1

α=−1

α=1 α=−1

α=0α=1

Non-degenerations reasons

N2 6→N β
6 R=

{

A2
2=0, c3

12+c3
21= c2

13+c2
31=0

}

N5 6→g2, gα 6=0
3 R=

{

A2
1⊆A2, c2

12= c2
21, c2

13= c2
31, 2c2

12+c3
13+c3

31=0
}

The proof is complete.

Let us remember that the variety of 3-dimensional nilpotent algebras is ir-
reducible and defined by a rigid algebra, the variety of n-dimensional (n > 3)
nilpotent algebras is irreducible but does not have rigid algebras [9]. The present
observation and Theorem 3.1 gives the following question.

Open question. Are there rigid algebras in the variety of n-dimensional (n> 3)
nilalgebras with nilindex k?
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