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Abstract. This note proves that the extended CMV matrices with Verblunsky
coefficient that is generated by a smooth volume preserving mixing dynamical
system and a Hölder sampling function have almost surely continuous spec-
trum.
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1 Introduction

Let us consider the extended CMV matrix, which is a special five-diagonal doubly
infinite matrix in the standard basis of ℓ2(Z) written as
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, (1.1)

where {αn}n∈Z are Verlunsky coefficients belonging to D := {z∈C : |z|< 1} and

ρn=
√

1−|αn|2, for n∈Z. CMV matrix was firstly formulated by Cantero et al. [1].
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It is a well-known fact that the extended CMV matrices can be thought of as
unitary analogs of the Jacobi matrices. One expects to get the CMV analog of the
spectral results of Jacobi operators, especially the discrete Schrödinger operators.
The second part of Simon’s monograph [7], is written in this spirit.

Gordon lemma refers to a type of result in spectral theory that proves that
strong local repetition in the operator structure causes the operator to have no
eigenvalues. This result about Schrödinger operators is introduced by Gordon [5].
Recently, Fillman [4] demonstrated a version of the Gordon lemma that is valid
for CMV matrices, and he applied it to show that CMV matrices with Sturmian
Verblunsky coefficients have purely singular continuous spectrum supported on
a Cantor set of zero Lebesgue measure for all irrational frequencies and all phases.

In 2019, Fayad and Qu [3] constructed a smooth reparametrization of a linear
flow on T

3, combining mixing with the existence of super-recurrence times for
almost every point (see the relevant definitions below), and then proved that the
strong recurrence implies a Gordon property on the potential, which leads to the
absence of a pure point spectrum for the corresponding Schrödinger operator.

This note is devoted to get the CMV analog of the results in [3] by using the
Gordon lemma for CMV matrices. Our main result and the proof will be given in
the next section, i.e., Theorem 2.1.

Before state our main theorem, we would like to start with some definitions
and notations.

Definition 1.1 ([4]). α ∈ DZ is called a Gordon sequence if it is bounded away from

∂D={z∈C : |z|=1} and there exist positive integers nk →∞ such that

lim
k→∞

Cnk max
0≤j≤nk−1

|α(j)−α(j±nk)|=0

for all C>0.

Definition 1.2 ([3]). Let (Ω,T) be a dynamical system with Ω a compact metric space

and T a homeomorphism, i.e., topological dynamical system. Assume that y∈Ω. If there

exist β>1 and an integer sequence kn ↑∞ such that

d(Tkn y,y)≤exp
(

−k
β
n

)

,

then we say that y is super-recurrent with recurrent exponent β.

If µ is an invariant ergodic measure of T, we say that the system (Ω,T,µ) is super-

recurrent if µ-almost every x∈Ω is super-recurrent.

The translation of vector η=(η1,. . .,ηn)∈Rn on the n torus Tn=Rn/Zn is the
transformation

T
n→T

n,
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(y1,. . .,yn)→ (y1+η1,. . .,yn+ηn),

and we denote it by Rη. The translation Rη is said to be irrational if the real
numbers 1,η1,. . .,ηn are rationally independent.

The translation flow on Tn of vector η∈Rn is the flow arising from the con-
stant vector field X(y) = η. Let {Rtη} denote this flow and it is strictly ergodic
(uniquely ergodic and minimal) for the Harr measure µ if the number η1,. . .,ηn

are rationally independent. In this case we say it is an irrational flow. Given an
irrational translation Rη on Tn, then the flow {Rt(1,η)} on Tn+1 is irrational.

If φ is a strictly positive smooth real function on T
n, the reparametrization of

{Rtη} with velocity φ is defined as the flow given by the vector φ(y)η, that is, by
the system

dy

dt
=φ(y)η.

The new flow has the same orbits as {Rtη} and preserves a measure equivalent
to the Haar measure given by the density 1/φ. Moreover, if {Rtη} is uniquely
ergodic, then so is the reparametrization flow (see [6]).

Consider a function g∈ L1(Tn), g> c>0, where the c is an absolute constant.
The special flow constructed over Rη and under the ceiling function g is the quo-
tient flow of the action

T
n×R→T

n×R,

(y,s)→ (y,s+t)

by the relation (y,s+g(y))∼ (Rη(y),s). This flow acts on the manifold MRη,g =
Tn×R/∼.

A flow {Pt} preserving a measure ν on M is said to be mixing if, for any
measurable subsets A and B of M, one has

lim
t→∞

ν
(

Pt(A)∩B
)

=ν(A)ν(B).

In this note, we assume that T is a C1 diffeomorphism of T3 and consider a se-
quence of Verblunsky coefficients generated by a continuous sampling function
f :T3→D, i.e., αx(n)= f (Tn x) for n∈Z, writing E=ET,α,x.

2 Main theorem and its proof

Next lemma is a key tool in this note.
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Lemma 2.1 ( [4, Theorem 1.5]). If α= {α(n)}n∈Z is a Gordon sequence, then Eα has

purely continuous spectrum.

By Lemma 2.1, we know that in order to show that super-recurrence implies
the absence of a point part in the spectrum, it suffices to show that it yields the
Gordon sequence.

Proposition 2.1. If x∈T3 is super-recurrent and f :T3→D is Hölder continuous, then

αx ={αx(n)}n∈Z is a Gordon sequence.

Proof. Since T is C1, we know that T is Lipschitz and let L > 1 be the Lipschitz

constant. Suppose that f is γ-Hölder with Hölder constant C1 and β is the re-

current exponent of x. Let {kn : n ≥ 1} be the sequence related to x. By taking

a subsequence, we can assume that kn ≥n. For 1≤ l≤ kn, we have

∣

∣αx(l)−αx(l±kn)
∣

∣

=
∣

∣ f (Tl x)− f (Tl±kn x)
∣

∣

≤C1

∥

∥Tlx−Tl±knx
∥

∥

γ

≤C1

[

Ll‖x−T±kn x‖
]γ

≤C1

[

Lkn e−k
β
n

]γ

=C1exp(−γ(k
β
n−kn lnL))≤C−kn

as soon as n is large enough, where C>0 is a constant. By the Definition 1.1, αx is

Gordon sequence.

We now quote two lemmas on the reparametrized flow and the special flow
from [3].

Lemma 2.2 ([3, Theorem 1]). There exist (η,η′)∈R2 and a smooth reparametrization

φ∈C∞(T3,R∗
+) of the translation flow {Tt(η,η′,1)} such that the resulting flow is mixing,

for its unique ergodic invariant probability measure µφ, and µ-almost every x ∈ T
3 is

super-recurrent for its time-one map T, where µ denotes the Haar measure on the torus

T3 and µφ denotes the measure with density 1/φ.

For (η,η′)∈R
2 and smooth function ϕ∈C∞(T2,R∗

+), let {Rt
η,η′,ϕ} denote the

special flows over minimal translations of the two torus T2 and under the smooth
function ϕ.
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Lemma 2.3 ( [3, Theorem 2]). There exist a vector (η,η′)∈R
2 and a smooth strictly

positive function ϕ defined over T2 such that the special flow {Rt
η,η′ ,ϕ} is mixing and

µ-almost every x∈Mϕ ={(z,s) : z∈T2 ,s∈ [0,ϕ(z)]} is super-recurrent for R1
η,η′,ϕ.

Let T still denote the time-one map in Lemma 2.2. From this lemma we know
that µ-almost every x∈T3 is super-recurrent for this T and Haar measure µ, so
we can prove the following theorem:

Theorem 2.1. For every Verblunsky sequence αx ={αx(n)}n∈Z defined by Hölder con-

tinuous sampling function f : T3→D with αx(n)= f (Tnx), x∈T3, the corresponding

CMV matrix ET,α,x has purely continuous spectrum for µ-almost every x∈T3.

Proof. By [2, Section 4] we know the equivalence between special flows and re-

parametrizations on T3. And then, by Lemmas 2.2 and 2.3, we can get that µ-

almost every x ∈T3 is super-recurrent for T. Hence, Theorem 2.1 follows from

Proposition 2.1 and Lemma 2.1.
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