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Abstract. We establish the unique ergodicity of a fully discrete scheme for
monotone SPDEs with polynomial growth drift and bounded diffusion coeffi-
cients driven by multiplicative white noise. The main ingredient of our method
depends on the satisfaction of a Lyapunov condition followed by a uniform
moments’ estimate, combined with the regularity property for the full dis-
cretization. We transform the original stochastic equation into an equivalent
random equation where the discrete stochastic convolutions are uniformly con-
trolled to derive the desired uniform moments’ estimate. Applying the main re-
sult to the stochastic Allen-Cahn equation driven by multiplicative white noise
indicates that this full discretization is uniquely ergodic for any interface thick-
ness. Numerical experiments validate our theoretical results.
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1 Introduction

The invariant measure and ergodicity, as a significant long-time behavior of Mar-
kov processes generated by stochastic ordinary and partial differential equations
(SODEs and SPDEs, respectively), characterize the identity of temporal aver-

∗Corresponding author. Email address: liuzh3@sustech.edu.cn (Z. Liu)



Z. Liu / Commun. Math. Res., 41 (2025), pp. 30-44 31

age and spatial average, which has many applications in quantum mechanics,
fluid dynamics, financial mathematics, and many other fields [7, 9]. As everyone
knows, the explicit expression of the invariant measure for a stochastic nonlin-
ear system is rarely available. For this reason, it motivated and fascinated a lot
of investigations in recent decades for designing numerical algorithms that can
inherit the ergodicity of the original system.

There have been some developments in the construction and analysis of nu-
merical algorithms for the invariant measures and ergodic limits of dissipative
SODEs, Lipschitz SPDEs, or SPDEs with super-linear growth coefficients driven
by trace-class noise. See, e.g., [10, 11, 18] and references therein for numerical er-
godicity of dissipative SODEs with or without Markovian switching, [2, 4–6, 8]
for approximating the invariant measures of parabolic SPDEs driven by additive
noise, [14,15] for the unique ergodicity of the drift-implicit Euler Galerkin (DIEG)
scheme of monotone SPDEs with polynomial growth coefficients driven by mul-
tiplicative trace-class noise.

In the settings of the infinite-dimensional case, we note that most of the exist-
ing literature focuses on the numerical ergodicity of Lipschitz SPDEs driven by
additive white noise or monotone SPDEs driven by trace-class noise; the case of
super-linear SPDEs driven by multiplicative white noise is more subtle and chal-
lenging. Our main aim is to indicate that the widely studied DIEG scheme (see
(DIEG)) applied to second-order monotone SPDEs with polynomial growth coef-
ficients driven by nondegenerate multiplicative white noise is uniquely ergodic
(see Theorem 3.1). Applying this result to the 1D stochastic Allen-Cahn equa-
tion driven by nondegenerate multiplicative white noise indicates that its DIEG
scheme is uniquely ergodic for any interface thickness (see Theorem 3.2).

The paper is organized as follows. Section 2 gives the principal assumptions
on the considered SPDE. In this part, we show the unique solvability and re-
quired properties of the DIEG scheme. The Lyapunov structure and regularity
property of the DIEG scheme with application to the stochastic Allen-Cahn equa-
tion are explored in Section 3. The theoretical results are verified by numerical
experiments in Section 4.

2 Preliminaries

This section presents the main assumptions used throughout the paper, the solv-
ability, and the properties needed for the full discretization to be considered.
We also give some preliminaries on invariant measure and ergodicity of Markov
chains.


