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Abstract. We establish the unique ergodicity of a fully discrete scheme for
monotone SPDEs with polynomial growth drift and bounded diffusion coeffi-
cients driven by multiplicative white noise. The main ingredient of our method
depends on the satisfaction of a Lyapunov condition followed by a uniform
moments’ estimate, combined with the regularity property for the full dis-
cretization. We transform the original stochastic equation into an equivalent
random equation where the discrete stochastic convolutions are uniformly con-
trolled to derive the desired uniform moments’ estimate. Applying the main re-
sult to the stochastic Allen-Cahn equation driven by multiplicative white noise
indicates that this full discretization is uniquely ergodic for any interface thick-
ness. Numerical experiments validate our theoretical results.
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1 Introduction

The invariant measure and ergodicity, as a significant long-time behavior of Mar-
kov processes generated by stochastic ordinary and partial differential equations
(SODEs and SPDEs, respectively), characterize the identity of temporal aver-
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age and spatial average, which has many applications in quantum mechanics,
fluid dynamics, financial mathematics, and many other fields [7, 9]. As everyone
knows, the explicit expression of the invariant measure for a stochastic nonlin-
ear system is rarely available. For this reason, it motivated and fascinated a lot
of investigations in recent decades for designing numerical algorithms that can
inherit the ergodicity of the original system.

There have been some developments in the construction and analysis of nu-
merical algorithms for the invariant measures and ergodic limits of dissipative
SODEs, Lipschitz SPDEs, or SPDEs with super-linear growth coefficients driven
by trace-class noise. See, e.g., [10, 11, 18] and references therein for numerical er-
godicity of dissipative SODEs with or without Markovian switching, [2, 4–6, 8]
for approximating the invariant measures of parabolic SPDEs driven by additive
noise, [14,15] for the unique ergodicity of the drift-implicit Euler Galerkin (DIEG)
scheme of monotone SPDEs with polynomial growth coefficients driven by mul-
tiplicative trace-class noise.

In the settings of the infinite-dimensional case, we note that most of the exist-
ing literature focuses on the numerical ergodicity of Lipschitz SPDEs driven by
additive white noise or monotone SPDEs driven by trace-class noise; the case of
super-linear SPDEs driven by multiplicative white noise is more subtle and chal-
lenging. Our main aim is to indicate that the widely studied DIEG scheme (see
(DIEG)) applied to second-order monotone SPDEs with polynomial growth coef-
ficients driven by nondegenerate multiplicative white noise is uniquely ergodic
(see Theorem 3.1). Applying this result to the 1D stochastic Allen-Cahn equa-
tion driven by nondegenerate multiplicative white noise indicates that its DIEG
scheme is uniquely ergodic for any interface thickness (see Theorem 3.2).

The paper is organized as follows. Section 2 gives the principal assumptions
on the considered SPDE. In this part, we show the unique solvability and re-
quired properties of the DIEG scheme. The Lyapunov structure and regularity
property of the DIEG scheme with application to the stochastic Allen-Cahn equa-
tion are explored in Section 3. The theoretical results are verified by numerical
experiments in Section 4.

2 Preliminaries

This section presents the main assumptions used throughout the paper, the solv-
ability, and the properties needed for the full discretization to be considered.
We also give some preliminaries on invariant measure and ergodicity of Markov
chains.
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2.1 Main assumptions

Denote by ‖·‖ and 〈·,·〉 the norm and inner product, respectively, in H :=L2(0,1)
equipped with the Borel σ-algebra B(H). For θ ∈ [−1,1], we use (Ḣθ = Ḣθ(0,1),
‖·‖θ) to denote the usual Sobolev interpolation spaces; the dual between Ḣ1 and
Ḣ−1 is denoted by 1〈·,·〉−1. We use Cb(H) and (L0

2,‖·‖L0
2
) to denote the space

of bounded, continuous functions and Hilbert-Schmidt operators on H, respec-
tively.

Let W be an H-valued cylindrical Wiener process on a complete filtered prob-
ability space (Ω,F ,(Ft)t≥0,P), i.e., there exist an orthonormal basis {gk}

∞
k=1 of

H and a sequence of mutually independent Brownian motions {βk}
∞
k=1 such that

(see [12, Proposition 2.1.10])

W(t,ξ)= ∑
k∈N+

gk(ξ)βk(t), (t,ξ)∈R+×(0,1).

In the distribution sense, the spatial derivative of W is the so-called (space-time)
white noise.

Denote by ∆ the Dirichlet Laplacian operator on H. Then −∆ possesses a se-
quence of positive eigenvalues {λk}k∈N+

in an increasing order corresponding to
the eigenvectors {ek}k∈N+

which vanish on the boundary of (0,1), respectively

−∆ek =λkek, k∈N+. (2.1)

It is clear that the following Poincaré inequality holds (with λ1=π2):

‖∇x‖2≥λ1‖x‖2, x∈ Ḣ1. (2.2)

Let us consider the following second-order parabolic SPDE driven by an H-
valued cylindrical Wiener process W:

dX(t,ξ)=
(

∆X(t,ξ)+ f (X(t,ξ))
)

dt+g
(

X(t,ξ)
)

dW(t,ξ), (t,ξ)∈R+×O , (2.3)

under (homogenous) Dirichlet boundary condition (DBC) X(t,ξ)=0, (t,ξ)∈R+×
∂O , with the initial datum X0(ξ) := X(0,ξ), ξ ∈ O . Here, f is assumed to be
monotone-type with polynomial growth, and g is a continuous, bounded, and
invertible function (see Assumptions 2.1 and 2.2).

It is known that Eq. (2.3) driven by white noise possesses a random field
solution only in 1D; thus, we restrict our investigation to the 1D physical do-
main O = (0,1). We note that Eq. (2.3) includes the following stochastic Allen-
Cahn equation under DBC, arising from phase transition in materials science by
stochastic perturbation, as a special case

dX(t,ξ)=∆X(t,ξ)dt+ǫ−2
(

X(t,ξ)−X(t,ξ)3
)

dt+g
(

X(t,ξ)
)

dW(t,ξ), (2.4)
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where the positive index ǫ≪1 is the interface thickness; see, e.g., [1,3,14–17] and
references therein.

Our main conditions on the coefficients of Eq. (2.3) are the following two as-
sumptions.

Assumption 2.1. There exist scalars Ki ∈R, i=1,2,3,4,5, and q≥1 such that

(

f (ξ)− f (η)
)

(ξ−η)≤K1(ξ−η)2, ξ,η∈R, (2.5)

f (ξ)ξ≤K2 |ξ|
2+K3, ξ∈R, (2.6)

| f (ξ)|≤K4 |ξ|
q+K5, ξ∈R. (2.7)

Remark 2.1. It is clear that the corresponding function f (ξ) := ǫ−2(ξ−ξ3),
ξ∈R, in the stochastic Allen-Cahn equation (2.4) satisfies Assumption 2.1; see [17,

Example 2.1].

Define the Nemytskii operator F : Ḣ1→ Ḣ−1 associated with f by

F(x)(ξ) := f
(

x(ξ)
)

, x∈ Ḣ1, ξ∈ (0,1). (2.8)

Then the monotone condition (2.5) and the coercive condition (2.6) yield that the
operator F defined in (2.8) satisfies

1〈x−y,F(x)−F(y)〉−1 ≤K1‖x−y‖2, x,y∈ Ḣ1, (2.9)

1〈x,F(x)〉−1 ≤K2‖x‖2+K3, x∈ Ḣ1. (2.10)

Assumption 2.2. g:R→R is continuous, invertible, and bounded, i.e., there exists

a nonnegative constant K6 such that

0 6= |g(ξ)|≤K6 , ξ∈R. (2.11)

As in (2.8), one can define the Nemytskii operator G : H→L0
2 associated with

g by

G(x)gk(ξ) := g
(

x(ξ)
)

gk(ξ), x∈H, k∈N, ξ∈ (0,1). (2.12)

Then Eq. (2.3) is equivalent to the following infinite-dimensional stochastic evo-
lution equation:

dX(t)=
(

∆X(t)+F(X(t))
)

dt+G
(

X(t)
)

dW, t≥0, X(0)=X0 . (2.13)
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2.2 DIEG scheme and solvability

To introduce the fully discrete scheme, let N∈N+ and VN be the space spanned
by the first N-eigenvectors of ∆

VN :=span{e1,e2,··· ,eN}, N∈N+.

Define the spectral Galerkin approximate Laplacian operator ∆N : VN →VN and
the generalized orthogonal projection operator PN : Ḣ−1→VN , respectively, as

〈∆NuN ,vN〉=−〈∇uN ,∇vN〉, uN ,vN ∈VN ,

〈PNu,vN〉=1 〈vN ,u〉−1, u∈ Ḣ−1, vN ∈VN .

Then the DIEG scheme of Eq. (2.13) is to find a VN-valued discrete process {XN
j :

j∈N} such that

XN
j+1=XN

j +τ∆NXN
j+1+τPNF

(

XN
j+1

)

+PNG
(

XN
j

)

δjW, (DIEG)

starting from the VN-valued r.v. XN
0 (usually, one takes XN

0 =PNX0 with X0 being
the initial datum of Eq. (2.13)), where δjW =W(tj+1)−W(tj), j ∈ N. This fully
discrete scheme and its Galerkin finite element version have been widely studied;
see, e.g., [6, 13–15, 17].

It is clear that the DIEG scheme (DIEG) is equivalent to the scheme

XN
j+1=SN,τXN

j +τSN,τPNF
(

XN
j+1

)

+SN,τPNG
(

XN
j

)

δjW, j∈N, (2.14)

where SN,τ :=(Id−τ∆N)
−1 is a space-time approximation of the continuous semi-

group {S(t) = e∆t : t≥ 0} in one step. Here and in what follows, Id denotes the
identity operator in VN. Iterating (2.14) for m-times, we obtain

XN
j =S

j
N,τXN

0 +τ
j−1

∑
i=0

S
j−i
N,τPNF

(

XN
i+1

)

+
j−1

∑
i=0

S
j−i
N,τPNG

(

XN
i

)

δiW, j∈N+. (2.15)

To investigate the solvability of the DIEG scheme (DIEG), we need to consider
the implicit operator F̂ :VN →VN defined by

F̂(x)=(Id−τ∆N)x−τPNF(x), x∈VN . (2.16)

Then (DIEG) becomes

F̂
(

XN
j+1

)

=XN
j +PNG

(

XN
j

)

δjW, j∈N. (2.17)
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Lemma 2.1. Under the condition (2.5) with (K1−λ1)τ<1, F̂:VN→VN defined in (2.16)

is bijective so that the DIEG scheme (DIEG) can be uniquely solved pathwise. Moreover,

F̂ is an open map, i.e. for each open set A∈B(VN), F̂(A) is also an open set in B(VN).

Proof. It follows from the one-sided Lipschitz condition (2.9) and the Poincaré

inequality (2.2) that

〈x−y, F̂(x)− F̂(y)〉

= 〈x−y,(Id−τ∆N)(x−y)−τPN(F(x)−F(y))〉

=‖x−y‖2+τ‖∇(x−y)‖2−τ 1〈x−y,F(x)−F(y)〉−1

≥ (1−(K1−λ1)τ)‖x−y‖2

:=C0‖x−y‖2 , ∀x,y∈VN.

As (K1−λ1)τ<1, F̂ defined in (2.16) is strictly monotone in the finite-dimensional

Hilbert space VN and thus invertible (see, e.g., [19, Theorem C.2]), so that (DIEG)

is uniquely solved pathwise.

It remains to show that F̂ is an open map. From the above strict monotonicity

and the fact that

‖F̂(x)− F̂(y)‖·‖x−y‖≥〈x−y, F̂(x)− F̂(y)〉, ∀x,y∈VN ,

we obtain

‖F̂(x)− F̂(y)‖≥C0‖x−y‖, ∀x,y∈VN. (2.18)

This shows that

B
(

F̂(x),r
)

⊂ F̂
(

B(x,r/C0)
)

, ∀x∈VN , r>0. (2.19)

Let us fix an open set A∈B(VN). Then, for each point x∈A, there exists an open

ball B(x,r0/C0)⊂A with r0>0. Due to the inclusion (2.19), we have

B
(

F̂(x),r0

)

⊂ F̂
(

B(x,r0/C0)
)

⊂ F̂(A),

which shows that F̂(A) is an open map.

2.3 Preliminaries on ergodicity of Markov chains

Denote by P : VN×B(VN)→ [0,1] the transition kernel of the Markov chain {XN
n :

n∈N} generated by (DIEG), i.e.,

P(x,A)=P
(

XN
n+1∈A |XN

n = x
)

, x∈VN, A∈B(VN). (2.20)
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We also use Pn,n∈N+, to denote the corresponding Markov semigroup on B(VN)

Pnφ(x) :=E

[

φ
(

XN
n

)

|XN
0 = x

]

, x∈VN , φ∈Bb(VN).

A probability measure µ on VN is called invariant for the Markov chain {XN
n :

n∈N} or its transition kernel P, if
∫

VN

Pφ(x)µ(dx)=µ(φ) :=
∫

VN

φ(x)µ(dx), ∀φ∈Cb(H).

This is equivalent to
∫

N
P(x,A)µ(dx)=µ(A) for all A∈B(H).

An invariant (probability) measure µ is called ergodic for {XN
n : n∈N} or P, if

lim
m→∞

1

m

m

∑
n=0

Pnφ(x)=µ(φ) in L2(VN;µ), ∀φ∈L2(VN;µ). (2.21)

It is well-known that if {XN
n :n∈N} admits a unique invariant measure, then it is

ergodic; in this case, we call it uniquely ergodic.

3 Unique ergodicity of DIEG

This section shows the unique ergodicity of the DIEG scheme (DIEG) and then
apply it to the stochastic Allen-Cahn equation (2.4) driven by nondegenerate mul-
tiplicative white noise.

3.1 Lyapunov structure of DIEG

We begin with the Lyapunov structure of the DIEG scheme (DIEG). To this end,
we need the following uniform estimation for the sum (WN

j )j∈N+ of discrete

stochastic convolutions in (2.15), where we define

WN
j :=

j−1

∑
i=0

S
j−i
N,τPNG

(

XN
i

)

δiW, j∈N+. (3.1)

Lemma 3.1. Let (2.5) and (2.11) hold with (K1−λ1)τ < 1. Then for any p ≥ 2, N ∈
N+, τ ∈ (0,1) with (K1−λ1)τ < 1, and β ∈ [0,1/2), there exists a positive constant

C=C(p,β,K6) such that

sup
N∈N+

sup
j∈N+

E
∥

∥WN
j

∥

∥

p

β
≤C. (3.2)
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Proof. Denote by

Zi :=(−∆)β/2S
j−i
N,τPNG

(

XN
i

)

δiW, i∈N.

For any i ∈ N, it is clear that G(XN
i ) is Fti

-measurable and that δiW is Fti+1
-

measurable and independent of Fti
. Consequently, {Yj :=∑

j−1
i=0 Zi, j∈N+; Y0 :=0}

is a (VN-valued) (Ftj
)j∈N+-discrete martingale, so that {Zi=Yi+1−Yi :i∈N} is an

(Ftj
)j∈N+-martingale difference.

Using the discrete Burkholder-Davis-Gundy (BDG) inequality (see, e.g., [17,

Lemma 2.2]), we obtain

E
∥

∥WN
j

∥

∥

p

β
=E

∥

∥

∥

∥

∥

j−1

∑
i=0

Zi

∥

∥

∥

∥

∥

p

≤C

(

j−1

∑
i=0

‖Zi‖
2
L

p
ω L2

x

)p/2

=C

(

j−1

∑
i=0

∥

∥

∥

∥

∫ ti+1

ti

(−∆)β/2S
j−i
N,τPNG

(

XN
i

)

dWt

∥

∥

∥

∥

2

L
p
ω L2

x

)p/2

.

Here and in what follows, C denotes a universally positive constant that would

differ in each appearance, and L
p
ω and L2

x denote the usual Lp- or L2-norm in Ω

and (0,1), respectively. Then, we use the continuous BDG inequality, the defi-

nition of the L0
2-norm, the relation (2.1), and the properties of SN,τ and PN to

get

E
∥

∥WN
j

∥

∥

p

β
≤Cτp/2

(

j−1

∑
i=0

∥

∥

∥
(−∆)β/2S

j−i
N,τPNG

(

XN
i

)

∥

∥

∥

2

L
p
ωL

0
2

)p/2

=Cτp/2

(

j−1

∑
i=0

∥

∥

∥

∥

∑
m,n

〈

(−∆)β/2S
j−i
N,τPNG

(

XN
i

)

em,en

〉2
∥

∥

∥

∥

L
p/2
ω

)p/2

=Cτp/2

(

j−1

∑
i=0

∥

∥

∥

∥

∑
n

λ
β
n(1+τλn)

−2(j−i)∑
m

〈

G
(

XN
i

)

em,en

〉2
∥

∥

∥

∥

L
p/2
ω

)p/2

=Cτp/2

(

j−1

∑
i=0

∥

∥

∥

∥

∑
n

λ
β
n(1+τλn)

−2(j−i)
∥

∥G
(

XN
i

)

en

∥

∥

2
∥

∥

∥

∥

L
p/2
ω

)p/2

.

It follows from the condition (2.11) that

E
∥

∥WN
j

∥

∥

p

β
≤Cτp/2

(

∑
n

λ
β
n

j−1

∑
i=0

(1+τλn)
−2(j−i)

)p/2

≤C

(

∑
n

λ
β−1
n

)p/2

,
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which is finite as β<1/2, where in the last inequality, we have used the elemen-

tary identity
j−1

∑
i=0

(1+τλn)
−2(j−i)=[τλn(λn+2)]−1.

The proof is complete.

Now, we can develop the following Lyapunov structure for the DIEG scheme
(DIEG).

Proposition 3.1. Let Assumption 2.1 and condition (2.11) hold with K2<λ1. Then for

any N∈N+, τ∈(0,1) with (K1−λ1)τ<1, and F0-measurable XN
0 ∈L2(Ω;VN), there

exist positive constants γ and Cγ such that

E
∥

∥XN
j

∥

∥

2
≤ e−γtjE

∥

∥XN
0

∥

∥

2
+Cγ, j∈N. (3.3)

Proof. For j ∈ N, set YN
j := XN

j −WN
j , where WN

j is defined in (3.1). Then from

(2.15) we have

YN
j+1=S

j+1
N,τXN

0 +τ
j

∑
i=0

S
j+1−i
N,τ PNF

(

YN
i+1+WN

i+1

)

.

It is clear that

YN
j+1=YN

j +τ∆NYN
j+1+τPNF

(

YN
j+1+WN

j+1

)

. (3.4)

Testing (3.4) with YN
j+1 under the 〈·,·〉-inner product, using the elementary equal-

ity

2〈x−y,x〉=‖x‖2−‖y‖2+‖x−y‖2, x,y∈VN ,

and integration by parts, we have

∥

∥YN
j+1

∥

∥

2
−
∥

∥YN
j

∥

∥

2
+
∥

∥YN
j+1−YN

j

∥

∥

2
+2τ

∥

∥∇YN
j+1

∥

∥

2

=2
〈

YN
j+1,F

(

XN
j+1

)

−F
(

WN
j+1

)

〉

τ+2
〈

YN
j+1,F

(

WN
j+1

)

〉

τ.

Using the condition (2.10) and Cauchy–Schwarz inequality leads to

∥

∥YN
j+1

∥

∥

2
−
∥

∥YN
j

∥

∥

2
+2τ

∥

∥∇YN
j+1

∥

∥

2

≤2K2τ
∥

∥YN
j+1

∥

∥

2
+2τ

〈

YN
j+1,F

(

WN
j+1

)

〉

≤2K2τ
∥

∥YN
j+1

∥

∥

2
+2ετ

∥

∥∇YN
j+1

∥

∥

2
+Cετ

∥

∥F
(

WN
j+1

)
∥

∥

2

−1
,
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for any positive ε. Taking the expectation on both sides and using the Poincaré

inequality (2.2), we obtain

E
∥

∥YN
j+1

∥

∥

2
≤

1

1+[(2−ε)λ1−2K2]τ
E
∥

∥YN
j

∥

∥

2

+
Cετ

1+[(2−ε)λ1−2K2]τ
E
∥

∥F
(

WN
j+1

)
∥

∥

2

−1
.

By the embeddings L1⊂Ḣ−1 and Ḣβ⊂ L̇q for sufficiently large β<1/2, the growth

condition (2.7), and the estimation (3.2), we have

E

[

∥

∥F
(

WN
j

)
∥

∥

2

−1

]

≤CE

[

∥

∥F
(

WN
j

)
∥

∥

2

L1

]

≤C
(

1+E

[

∥

∥|WN
j

∥

∥

2q

Lq

])

≤C
(

1+E

[

∥

∥|WN
j

∥

∥

2q

β

])

≤C.

Combining the above two estimates leads to

E
∥

∥YN
j+1

∥

∥

2
≤

1

1+[(2−ε)λ1−2K2]τ
E
∥

∥YN
j

∥

∥

2
+

Cετ

1+[(2−ε)λ1−2K2]τ
,

from which we obtain

E
∥

∥YN
j

∥

∥

2
≤

(

1

1+[(2−ε)λ1−2K2]τ

)j

E‖X0‖
2

+
Cετ

1+[(2−ε)λ1−2K2]τ

j−1

∑
i=0

(

1

1+[(2−ε)λ1−2K2]τ

)i

.

Note that ak
< e−(1−a)k for any a∈ (0,1) and that 1/(1+[(2−ε)λ1−2K2]τ)<1 for

any τ∈ (0,1), which is ensured by the condition K2<λ1 and the fact that ε can be

taken as an arbitrary small positive constant, we conclude (3.3) with

γ :=
(2−ε)λ1−2K2

1+[(2−ε)λ1−2K2]τ
, Cγ :=

Cε

(2−ε)λ1−2K2
.

The proof is complete.

Remark 3.1. The result in Proposition 3.1 indicates that V :VN→ [0,∞) defined by

V(x)=‖x‖2, x∈VN, is a Lyapunov function of the DIEG scheme (DIEG).
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Remark 3.2. We impose the bounded assumption on the diffusion coefficient

in the present white noise case. For an unbounded diffusion coefficient, such

stochastic-random transform argument would fail as one could not derive the

estimate (3.2) for WN
j defined in (3.1).

3.2 Regularity property

In this part, we aim to derive the regularity property of the transition kernel P
defined in (2.20) associated with the DIEG scheme (DIEG) in the sense that all
transition probabilities of (DIEG) are equivalent.

Proposition 3.2. Let Assumptions 2.1 and 2.2 hold. Then for any N∈N+ and τ∈(0,1)
with (K1−λ1)τ < 1, P is regular. Consequently, there exists at most, if it exists, one

invariant measure of {XN
n : n∈N} in VN.

Proof. Let x∈VN and A be a non-empty Borel open set in VN. By (2.17), we have

P(x,A)=P
(

XN
n+1∈A |XN

n = x
)

=µx,[PN G(x)][PNG(x)]⊤τ

(

F̂(A)
)

, (3.5)

as

x+PNG(x)δnW∼N
(

x,[PNG(x)][PN G(x)]⊤τ
)

,

where µa,b denotes the Gaussian measure in VN with mean a∈VN and variance

operator b ∈L(VN). It was shown in Lemma 2.1 that F̂ is an open map so that

F̂(A) is a non-empty open set. Due to the non-degeneracy of G in Assump-

tion 2.2, the Gaussian measure µx,[PN G(x)][PNG(x)]⊤τ(F̂(A)) is non-degenerate in

B(VN). Indeed, for any vN ∈VN\{0},

〈

[PNG(x)][PN G(x)]⊤vN,vN

〉

=
∥

∥[PNG(x)]⊤vN

∥

∥

2
= ∑

m∈N+

〈

[PNG(x)]⊤vN ,em

〉2

= ∑
m∈N+

〈

vN ,PNG(x)em

〉2
= ∑

m∈N+

〈

vN ,G(x)em

〉2

=
∫ 1

0

∣

∣g
(

x(ξ)
)
∣

∣

2
|vN(ξ)|

2dξ>0,

as g is invertible in R. It is well-known that all non-degenerate Gaussian mea-

sures are equivalent in the finite-dimensional case. Thus, P is regular, and by

Doob theorem, it possesses at most one invariant measure.
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Now, we can show the unique ergodicity of the DIEG scheme (DIEG).

Theorem 3.1. Let Assumptions 2.1 and 2.2 hold with K2<λ1. Then (DIEG) is uniquely

ergodic for any N∈N+ and τ∈ (0,1) with (K1−λ1)τ<1.

Proof. The Lyapunov condition (3.3) in Theorem 3.1, together with the Feller

property followed from the regularity property in Proposition 3.2, imply the ex-

istence of an invariant measure for {XN
n : n∈N}. Combined with the regularity

property in Proposition 3.2, we conclude the uniqueness of the invariant measure

for {XN
n : n∈N}.

Applying the above result of Theorem 3.1, we have the following unique er-
godicity of the DIEG scheme (DIEG) applied to the stochastic Allen-Cahn equa-
tion (2.4).

Theorem 3.2. Let Assumption 2.2 hold. For any ǫ > 0, N ∈N+ and τ ∈ (0,1) with

(ǫ−2−λ1)τ<1, (DIEG) applied to Eq. (2.4) is uniquely ergodic.

Proof. We just need to check that the conditions in Assumption 2.1 hold with

K2 < λ1 in the setting of Eq. (2.4) with q = 3, f (ξ) = ǫ−2(ξ−ξ3), ξ ∈ R, and g

satisfying Assumption 2.2.

The validity of (2.5) and (2.7) in Assumption 2.1 in the setting of Eq. (2.4) were

shown in [14, Section 4]: K1 = ǫ−2, K4 = 2ǫ−2, and K5 = ǫ−2. Moreover, one can

take K2 to be any negative scalar and thus (2.6) with K2 < λ1 and some K3 > 0;

see [15, Theorem 4.4].

4 Numerical experiments

In this section, we perform numerical experiments to verify our theoretical result,
Theorem 3.2 in Section 3.

The numerical test is given to the stochastic Allen-Cahn equation (2.4) in O=
(0,1) with ǫ=0.5 and g(x)=2+sinx2. By Theorem 3.2, the DIEG scheme (DIEG)
applied to Eq. (2.4) is uniquely ergodic for any τ ∈ (0,1) (fulfilling the condition
(ǫ−2−λ1)τ < 1). We take τ = 0.05 and N = 10 (the dimension of the spectral
Galerkin approximate space), choose three initial data

X0(ξ)=sinπξ,
10

∑
k=1

sinkπξ, −
10

∑
k=1

sinkπξ, ξ∈ (0,1),
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Figure 1: Time averages of (DIEG) for Eq. (2.4).

respectively, and approximate the expectation by taking averaged value over
1,000 paths to implement the numerical experiments. In addition, we simulate
the time averages

1

2,000

2,000

∑
n=1

Eφ
(

XN
n

)

(up to n=2,000 corresponding to t=100) by

1

2,000,000

2,000

∑
n=1

1,000

∑
k=1

φ
(

XN,k
n

)

,

where XN,k
n denotes n-th iteration of k-th sample path and the test function φ are

chosen to be φ(·)= e−‖·‖2
, sin‖·‖2,‖·‖2, respectively.

From Fig. 1, the time averages of the DIEG scheme (DIEG) with different ini-
tial data converge to the same ergodic limit, which coincides with the theoretical
result in Theorem 3.2. This experiment also indicates that the original 1D stochas-
tic Allen-Cahn equation (2.4), with bounded, invertible, and continuous diffusion
coefficient, driven by multiplicative white noise, is uniquely ergodic, which will
be investigated in a separate paper.
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