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Abstract. We introduce finite group action for associative algebras equipped
with a derivation (that is, AssDer pairs) and equivariant cohomology for such
algebraic object. Next, we discuss equivariant deformation theory and study
its relation with the equivariant cohomology.
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1 Introduction

Associative algebras are classical algebraic objects to study and has many impor-
tant applications in mathematics and physics. In particular, algebraic deforma-
tion theory and Hochschild cohomology theory for associative algebras are two
closely related topics and have received extensive study. Similar relations were
discovered for Lie algebras, Leibniz algebras and Loday-type algebras and this is
an important research direction. Derivations for associative algebras, which are
a generalization of differentiation for functions, have many applications. For ex-
ample, in homotopy Lie theory [17], differential Galois theory [11] and Gauge the-
ory [1]. Recently, Tang-Frégier-Sheng [16] introduced and discussed cohomology
and deformation theory for Lie algebras with derivations (called LieDer pairs).
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Later, cohomology and deformation theory for many similar algebraic structures
are studied, such as AssDer pairs [2], LeibDer pairs [2], DendDer pairs [14], and
these have been generalized to operads with higher derivations in [19].

Deformation theory is a fundamental research tool in mathematics, dating
back at least to Riemann. Then Kodaira and Spencer introduced the idea to the
study of higher dimensional complex manifolds. On the algebra side, the study
was initiated by Gerstenhaber [6-9], to associative algebras.

In the late 1950s, Borel began researching equivariant cohomology, a cohomol-
ogy theory for topological spaces that includes group actions. Equivariant ap-
proaches have been successfully employed to various fields, including algebraic
geometry, representation theory, and K-theory. Recent research has explored the
relationship between equivariant cohomology and deformation theory for vari-
ous types of algebra, including Leibniz algebras [12], associative algebras [13],
associative dialgebras [15], dendriform algebras [4], Lie-Yamaguti algebras [10],
and Lie triple systems [18].

In the current paper, we show how the above equivariant cohomology and
deformation techniques apply to algebraic objects equipped with a derivation. In
particular, we introduce group actions on AssDer pairs, as well as equivariant
cohomology and deformation theory for them. Similar relationships between
the two are investigated and generalized to our setting. We finish the paper
with a Maurer-Cartan characterization of the G-AssDer pair structure (see Def-
inition 3.1). We work over a field K of characteristic zero.

2 Preliminaries

First, we recall basics about AssDer pairs and their cohomology.

Definition 2.1. Suppose (A,-) is an associative algebra, a linear map d : A — A is
a derivation for A, if for any a,b € A we have d(a-b) =d(a)-b+a-d(b). An associa-
tive algebra with a derivation (A,d) is called an AssDer pair.

Definition 2.2. Suppose (A,d) is an AssDer pair, a (A,d)-left module is a pair (M,dM)
consists of an A-left module M and dM: M — M a linear map satisfying dM (am) =
d(a)m~+adM (m) for all ac A,m € M. Similarly one has a notion of (A,d)-right module.
An (A,d)- bimodule is a pair (M,d™) such that M is an A-bimodule and dM: M — M
is a linear map such that

dM(am)=d(a)m+ad™ (m), d™(ma)=d™(m)a+md(a)

forany ac A,me M.
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Remark 2.1. Any AssDer pair (A,d) is an (A,d)-bimodule over itself.

Now, let (A,d) be an AssDer pair and M an (A,d)-bimodule. Define

CY%(A,M):=0, CY(A,M):=Hom(A,M)

and
C"(A,M):=Hom(A®",M) x Hom(A*"~1,M) for n>2,
where
Hom(—,—)=Homy(—,—).
Define
o":C"(A,M) — C'"YA,M)
as
o= (Sppantr, —ou),
0" (a,B) := (Spoch®, OpocnB+(—1)"0a) for n>2,
where

Otoch: Hom(A®", M) — Hom(A®" ™1, M)

stands for the classical Hochschild differential for associative algebras
(5Hoch“) (xlz' o /xn—i—l)
n .
= xl‘x(XZI' o /xn+1) + Z(—l)l(x(x:[,' o XiXig1, /xn—|—1)
i=1

_|_(_1)”+1IX(X1,' . ',xn)xn+1(*)

and
5:Hom(A®",M) — Hom(A®",M)
is the map
n
Sa:=Y wo(id, - ,d, - ,id)—dMoa.
i=1
We have
Lemma 2.1. 1. ([3, Lemma 1]) OHoch©0 =000Hoch,

2. ([3, Proposition4]) 9"00"t1=0 for n>1.
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Hence, (C*(A,M),0) forms a cochain complex and we define the homologies
of this complex to be the cohomology of the AssDer pair (A,d) with coefficients
in M and denote it by H*(A,M). We use C*(A) to denote C*(A,A) when M is
taken to be A itself.

As noted in [5], the graded space @ Hom(A®",A) of Hochschild cochains of

n
the associative algebra A carries a degree —1 graded Lie bracket
0, B]:=a0p—(—1)mV-Dgoy,
where

(“oﬁ)(xlr'--/xm—kn—l)

m .
= Z(_l)(l_l)(n_l)lx(xll'-'/xi—ll,B(xi/“-/xi+n—1)l-'-/xm+n—1)
i=1

for . € Hom(A®™,A) and g€ Hom(A®",A). One checks directly that an element
m e Hom(A®2,A) gives an associative multiplication if and only if [n,m] =0 and
d e Hom(A,A) is a derivation with respect to a multiplication m if and only if
[m,d]=0.

It is further observed that

Proposition 2.1 ([3, Proposition 5]). There is an induced degree —1 graded Lie bracket
on C'(A),
n

[—,—]p:C"(A)xC"(A) — C"™"~1(A),
where

(), (B,B)] p = ([ B, (—1)" o, B+ (2] )

Therefore, (C""1(A),[—,—]p) is a graded Lie algebra and the differential
n

in the AssDer pair cochain complex (C*(A),0) has a characterization d(—) =
[(-a,d),—]p- In fact, (@C"*1(A),[—,—]p,9) is a dg Lie algebra.

n
3 Equivariant cohomology for AssDer pair

We introduce the notion of group action and equivariant cohomology theory for
AssDer pairs in this section. First,
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Definition 3.1. Let G be a finite group and (A,d) be an AssDer pair. Define a G-action
on (A,d) to be a map

p:GxA — A, (g4a) — ¢(ga):=ga
such that for g,h € G, x,y € A we have
1. e-x=x, where e is the identity element of G,
- & (hx)=(g-h)-x,
. 9g(—)=¢(g,—):A— A, a— g-a is linear,
g-(a-b)=(g-a)-(g-b),
5. g-da=d(g-a).

AW N

An AssDer pair together with a G-action is referred to as a G-AssDer pair.

Note that we use the same symbol ‘-’ to denote both the multiplication in A
and the group action. It should be clear from the context of what we really mean
and we will continue to do this for the entire paper.

Definition 3.2. Let (A,d) be a G-AssDer pair, a G-bimodule over (A,d) is an (A,d)-
bimodule (M,d™) such that G acts linearly on M, the left, right A-action on M and
dM are G-equivariant, that is, (g-a)-(g-m) =g-(a-m), (g-m)-(g-a) =g-(m-a) and
¢ dM(m)=dM(g-m) foranyac A, me M.

Remark 3.1. Any G-AssDer pair (A,d) is naturally a G-bimodule over itself.
Suppose (A,d) is a G-AssDer pair and M a G-bimodule, define

C};(A,M)::{ocecl(A,M):Hom(A,M): a(g-x)=g-a(x) for any gEG},
CL(A,M):=Homg(A®",M) x Homg(A®"~1,M)
::{(zx,,B)GC”(A,M): a(g-x1,+,8 Xn) =g a(x1,-+,%n),
B(g-x1,--+,9-xy—1)=8-B(x1,--+,x,—1) for any gEG}, n=2.
Elements in Homg(A®",M) are called equivariant.

Lemma3.1. 1. 9'(x)€Ci(A M), if xcCL(AM).
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2. Forn>2,9*(a,B)€CET(AM), if (a,B) €CL(A,M).

Proof.
ola = (8o, —0a) € C>(A,M) = Hom(A®?, M) x Hom(A,M)
with
(6r0cn) (x,y) =xa(y) —a(x)y,
(5Hoch“)(g X, y)
=(g-x)a(gy)—a(g-x)(gy)
=(g%)(g-a(y)) — (g-a(x))(gy)
=g (xa(y)) —g- (a(x)y)
= (g(éHoch‘X)) (x/y)
and

—d(a(g-x)) =—d(ga(x)) = —g(d(a(x))) =g(—d(a(x))),
hence 9'(x) € C%(A,M). Now, consider the case n >2. First of all, for any 7 €
Hom!%(A,M) we get 8oy € Hom(A®"™1, M) from (x) (on page 2) and

(OHochY)(8X1,++,8%n+1)

(=1 r(gxr, -, (8x:) (8%i1), - 8 %nt1)
)

(=1) 'y (gx1, -+ g (XixXix1), ++ 8%n41)

= (gx1)v(8x2, -, 8Xn41) +

~

1= = L=

+(=1)" oy (gxy, -, 8%n) (g

=
=
+
[uy

= (gx1)(87(x2, - xp31)) +

~.

~—

+(=1)"* 1 (g (xy, - (8%n+1)

_M: .

~
I
[y

=g(x1fy(x2,---,xn+1))—|— (—1)18’7(x1/"',xixi+1/"',xn+1)
+(—1)”“g(7(xh---,xn)xnﬂ)

n
=g<x1’7(xz,"',xn+1 Z V(X1 XiXig 1, Xng1)

+(=1)" oy (xg,- "/xn)xn—H)

- (g(éHocth)) (xll' v /xn_|_1).
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Similarly, we also have

—

Sy)(g-x1,++,8 Xn)

I
=

’)/(g.xll...Id(g.xi),...,g.xn) _d(’)/(g.xll...,g.xn))
1

~.

’)/(g.xll...,g.d(xi)’...’g.xn) _d(g.’)/(xll...’xn))

I
™=

~
I
[uay

I
=

1g"7(x1,-'-,d(xi),'-',xn) —g'd(’Y(XL"',xn))

= (8:(67)) (x1,++xn),

so that for («,8) € C% (A, M), we have

~.

(aﬂ (‘X’:B)) (g-x1,- "/g'xn—H)
= ((5H0ch06)(g.x1,.. ',g'xn+1)/(5Hoch,B)(g'x1," .’g,xn+1)

(1) (00) (g 31,8 Xnn))
= (8- (Grtos) (¥1,++ 042), (8- BrtocnB)) (31, 351)

(=) (g-(0)) (1, 2r1))
= (3-(2(&,))) (x1,+ % 11).

The proof is complete. O

Thus, (C5(A,M),0) is also a cochain complex. Therefore, we can make the
following definition.

Definition 3.3. Suppose (A,d) is a G-AssDer pair and M a G-bimodule, define the

homologies of the complex (C5(A,M),0) to be the equivariant cohomology of (A,d) with
coefficients in M and denote it by H:(A,M).

4 Equivariant deformation

Denote by A[[t]] the space of formal power series, so A[[t]] is an K[[t]]-module.
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Definition 4.1. An equivariant deformation for a G-AssDer pair (A,d) consists of for-
mal power series

me: Al[t]] < A[lt]] — Allt]], de:A[[t]] — A[[],

my¢(a,b)=a-b+ Z{mi(a,b)ti, di(a)=d(a)+ idi(a)ti

such that (A[[t]],m¢,dy) is an AssDer pair over K[[t|], where m;(ga,gb) = g-m;(a,b),
di(ga)=g-d;(a) (that is, m;€ Homg(A®A,A), d;€ Homg(A,A)).

The operation m; satisfies associativity law exactly like classical algebraic de-
formation theory so for a,b,c € A, we have

my(me(a,b),c) =my(a,m(b,c))

& Y my(mglab),c) —my(a,my(b,c)) =0.
pra=r,p.q=0

Similarly,

dt (mt(a,b)) =Ny (dt(a),b) +my (a,dt(b))

IEN Z dp(mg(a,b)) = Z my (dg(a),b) +mp,(a,dg(b)).
p+q=r,p,q20 p+q=r,p,q20

In particular,
my(ab,c)+mq(a,b)c=amq(b,c)+mq(a,bc),
d(mq(a,b)) +dy(ab) =dq(a)b+mq (d(a),b) +ady(b)+mq(a,d(b)),

that is,
9! (m1,d1) = Spjocnd +6my =0.
In addition, since m;,d; are equivariant, we have

Proposition 4.1. Let (m;,d;) be an equivariant deformation for the G-AssDer pair (A,d).
Then (mq,dy) is a 2-cocycle for the self coefficient equivariant cohomology for (A,d).

The 2-cocycle (m1,dq) is called the infinitesimal of the equivariant deformation
(ml’/dt) .

Definition 4.2. Suppose (my,d;) and (m},d}) are two equivariant deformations for a G-
AssDer pair (A,d), suppose there is an equivariant formal isomorphism

eotzz-dﬁiqol-tf:Autn — Al
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that is, each @; is a formal isomorphism from A to itself such that

mio(Qr@pr) =g@romy, @rody=diog;.
Then we say (my,dy) and (m},d}) are equivalent.

Equivalently, this means

Y, mio(ej@e)= ) giomj, Y, @iodj= ) diog;
i+j+k=n i+j=n i+j=n i+j=n

so for n=1, we have

my+@rom=m+mo(g1®id)+mo(id®¢1),
d1+(p10d=d£+d0¢1,
hence (my,d)—(m},d}) =9(¢1), so

Proposition 4.2. Two equivalent equivariant deformations have cohomologous infnites-
imals, that is, the infnitesimals of two equivalent equivariant deformations are cohomolo-
gous.

Definition 4.3. We say (my,d;) is trivial if it is equivalent to (mg,do) = (m,d) and the
G-AssDer pair (A,d) is rigid if all equivariant deformations are trivial.

Theorem 4.1. (A,d) is rigid if HA(A,A) =0.

Proof. Let (my,d;) be an equivariant deformation for (A,d) so (my,d1) is a 2-cocycle
by Proposition 4.1, hence there is some ¢; € C5(A,A) = Homg(A,A) such that
(ml,dl) =81(qol) Let

pr:=ida+@it: Alt]] — A[[t]],

define
/

mi=gplomo(@i@@y), di:=g; odiogy,
so (m;},d}) is equivalent to (m;,d;). From above definition we know
my=m-+mht>+---, dy=d+dot>+---,

that is, the linear part of (mj},d}) is canceled. Repeat the above process and even-
tually this gives (m;,d;) and (m,d) are equivalent. O
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Definition 4.4. Let (A,d) be a G-AssDer pair, an order n equivariant deformation con-
sists of formal power series

n n

my(a,b)=a-b+ Z{mi(a,b)ti, di(a)=d(a)+ .Z{di (a)t

such that (A[[t]]/(t"TY),my,d;) is an AssDer pair, with m; € Homg(A® A,A), d; €
Homg(A,A).

Explicitly, for any order n equivariant deformation, we have

Z mi(mj(a/b)lc): Z mi(a/mj(blc))/ (41)
i+j=k i+j=k
i+j=k i+j=k

for k=0,1,...,n.
Definition 4.5. Let (my,d;) be an order n equivariant deformation, if there is some
(My41,dns1) € CA(A,A) such that

(m,’f =my+my, "L, d) :=dt+dn+1t”+1)
is an order n+1 equivariant deformation. Then we say the equivariant deformation
(my,dy) is extensible.

Hence, for any extensible order n equivariant deformation (1;,d;), the follow-
ing two formulas need to hold in addition to (4.1) and (4.2):

Y. mi(mj(ab),c)= Y, mi(amib,c)),

i+j=n+1 i+j=n+1
Y di(mi(a,b))= Y m(di(a)b)+m;(ad;b)).
i+j=n+1 i+j=n+1
Equivalently,
OHoch (Mn+1)(a,b,c)

= Y. mji(mj(a,b),c) —m;(a,m;(b,c))

i+j=n+1,i,j>0
=:0b>(a,b,c),
(Otochn+1+0my41)(a,b)
= Y. di(mj(ab))—m;(dj(a),b) —m;(a,d;(b))

i+j=n+1i,j>0
=:0b?(a,b).
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Proposition 4.3. Ob:= (Ob®,0b?) is a 3-cocycle. This is called the obstruction class of
(mt,dt).

Proof. (Ob3,0b?) is a 3-cocycle for an ordinary AssDer pair (that is, without a fi-
nite group action) [3] so we just need to check whether everything still holds
for the equivariant situation and this is obvious, as all the m;, d; are themselves
equivariant. 0

Theorem 4.2. Any order n equivariant deformation (my,dy) is extensible if and only if
the obstruction class is trivial.

Corollary 4.1. Every finite order equivariant deformation is extensible if H (A, A)=0.

Corollary 4.2. Every 2-cocycle of the equivariant cohomology is the infinitesimal of some
equivariant deformation if H2 (A, A)=0.

5 Maurer-Cartan characterization

We finish the paper with a Maurer-Cartan characterization of G-AssDer pairs. Let
(A,d) be a G-AssDer pair throughout the section. We begin with the following
lemma.

Lemma 5.1. For any « € Homg(A®™,A) and B € Homg(A®",A), we have aof €
Homg(A®™+1=1 A). Thus, [(a,&),(8,B)]p€CHT 1 (A) if (x,a) EC(A) and (B,B) €
CL(A).

Proof. Indeed,
(@0B)(g X1, -8 Xmtn—1)
(—1)(i_1)(”_1)o¢(g-xl,...,g-xi_l,,B(g-xi,...,g-xi+n_1),...,g-xm+n_1)

o

N
I
—_

(_1)(i_1)(n_1)“(g'x1/n'/g'xi—llg'ﬁ(xi/-'-/xi—|—l’l—1)/"'/g'xm+n—1)

o

~
I
[y

(_1)(i_1)(n_1)g'“(xlz---/xi—lzﬁ(xi/---/xi+n—1)r---/xm+n—1)

o

N
I
—_

ron

8 (“OIB)) (X1, Ximgn—1)-

The proof is complete. O
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Therefore, the above lemma and Proposition 2.1 implies

Proposition 5.1. The bracket [—,—]|p on @ C"(A) gives an induced degree —1 graded
n
Lie bracket on @CFL(A). Therefore, (B Cé*l(A) [—,—|p) is a graded Lie algebra.
n n

Corollary 5.1. A pair (m,d) € CA(A) defines a G-AssDer pair on A if and only if it is
a Maurer-Cartan element of the graded Lie algebra (D Cgﬂ (A),[-,—]p)-
n

Proof. An element (m,d) € C4(A) is a Maurer-Cartan element of the graded Lie
algebra (? CLtL(A),[—,—]p) if
0=[(m,d),(m,d)]p = ([m,m],2[m,d]).
Hence, (A,m,d) is a G-AssDer pair if and only if it is a Maurer-Cartan element. [
By above discussion and observation at the end of Section 2, we have
Corollary 5.2. (CL™(A),[—,—]p,0(=)=(-a,d),—]p) is a dg Lie algebra for any
G-AssDer pair (AT-A,d).

We finish with the following further characterization of the G-AssDer struc-
ture. Note that we use m,m’ to denote the associative multiplication -4 and -/,
below to avoid weird notation like - 4 +-/,.

Theorem 5.1. Let (A,m,d) be a G-AssDer pair and (m',d") € C5(A). Then (A,m+
m',d+d") is a G-AssDer pair if and only if (m’,d") is a Maurer-Cartan element of the dg
Lie algebra

(@ct ()1 Toa-)=(Ca o),

n

ie., (m',d") satisfies the Maurer-Cartan equation
(m' ') +% [t '), ()] , =0,

Proof. By Corollary 5.1, (A,m+m’,d+d’) is a G-AssDer pair if and only if [(m+
m',d+d"),(m+m’,d+d")]p =0. Note

[(m—l—m d—t—d’),(m—l—m’,d-l—d’)}D
=2[(m,d ] —i—[(m',d'),(m’,d')]D

5 <a(m’,d’) ; (ot '), (m’,d’)]D),
because [(m,d),(m,d)]p =0.
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