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Abstract. Let C be a conjugation on a separable complex Hilbert space H. An
operator T on H is said to be C-symmetric if CTC=T∗, and T is said to be C-
skew symmetric if CTC=−T∗. It is proved in this paper that each C-skew sym-
metric operator can be written as the sum of two commutators of C-symmetric
operators.

AMS subject classifications: Primary 47B47, 47B99; Secondary 47L05

Key words: Complex symmetric operators, commutators, skew symmetric operators.

1 Introduction

This paper is a continuation of [28], where some results were obtained to exhibit
connections between complex symmetric operators and skew symmetric oper-
ators. The aim of the present paper is to represent skew symmetric operators
in terms of complex symmetric operators. To proceed, we first introduce some
notations and terminology.
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Throughout this paper, we denote by H a separable complex Hilbert space
endowed with the inner product 〈·,·〉, and by B(H) the algebra of all bounded
linear operators on H. A map C on H is called a conjugation, if C is conjugate-
linear, invertible with C−1=C and 〈Cx,Cy〉= 〈y,x〉 for all x,y∈H.

Definition 1.1. (i) An operator T∈B(H) is said to be complex symmetric if CTC=
T∗ for some conjugation C on H; in this concrete case, T is also called a C-

symmetric operator.

(ii) An operator T∈B(H) is said to be skew symmetric if CTC=−T∗ for some conju-

gation C on H; in this concrete case, T is also called a C-skew symmetric operator.

Complex symmetric operators are natural generalizations of symmetric matri-
ces and have been studied in the finite dimensional case for many years. The gen-
eral study of complex symmetric operators was initiated by Garcia, Putinar and
Wogen [16–18], and has received much attention in the past nearly two decades.
Many significant results have been obtained and show that complex symmet-
ric operators are closely related to the study of concrete operators [12–14, 26] as
well as mathematics physics [15, 20, 25]. In particular, it is worth mentioning that
the study of complex symmetric operators is closely related to that of truncated
Toeplitz operators, initiated in Sarason’s seminal paper [26]. The reader is re-
ferred to [4, 6, 19, 22–24, 30] for more results on complex symmetric operators.

The study of skew symmetric operators has classical roots in algebra and ge-
ometry. Skew symmetric operators are natural generalizations of skew symmet-
ric matrices. In fact, an operator T∈B(H) is skew symmetric if and only if T can
be written as a skew symmetric matrix with respect to some orthonormal basis
of H. The Lie algebra consisting of n×n skew symmetric matrices is one of the
classical finite-dimensional Lie algebras. Its infinite-dimensional analogue OC,
called the orthogonal Lie algebra of operators, is consisting of all C-skew sym-
metric operators for some conjugation C on some infinite-dimensional complex
Hilbert space H. In [11], de La Harpe discussed in detail the ideals, derivations,
real forms and automorphisms of OC. In a recent paper [7], Bu and the third au-
thor determined the Lie ideals of OC, their dual spaces as well as the spectra of
the derivations on OC. The reader is referred to [2, 3, 8, 21, 27, 29] for more results
about the operator-theoretic aspects of skew symmetric operators.

Complex symmetric operators and skew symmetric operators are closely con-
nected to each other. For C a conjugation, the set SC of all C-symmetric operators
is called the Hermitian type Cartan factor, while OC is called the symplectic type
Cartan factor [10]. They both appear in the study of JB∗-triples and play an im-
portant role in classification of bounded symmetric domains (see [9, 10]). One
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can check that SC and OC are complementary closed subspaces of B(H), that is,
SC+OC=B(H) and SC∩OC={0}. In [28], more connections between SC and OC

were established. It was proved that SC and OC are Roberts orthogonal to each
other (see [28, Theorem 2.1]), that is, ‖A−λB‖= ‖A+λB‖ for all A∈SC ,B∈OC

and all complex numbers λ. Moreover, the preannihilators of SC and OC were
completely determined as follows.

Theorem 1.1 ([28, Theorem 3.1]). Let C be a conjugation on H. Then (SC)⊥=OC∩
B1(H) and (OC)⊥ = SC∩B1(H), where B1(H) is the set of all trace class operators

on H.

Recall that the preannihilator of a subspace V of B(H) is defined as

V⊥ :=
{

X∈B1(H) : tr(AX)=0 for all A∈V
}

,

where tr(·) denotes trace.
Inspired by the preceding results, we aim to further explore the connection

between SC and OC for C a conjugation on H. The present work is mainly moti-
vated by the following observation:

A,B∈SC =⇒ [A,B] :=AB−BA∈OC . (1.1)

If we denote by [SC,SC] the collection of commutators of operators in SC, that is,
[SC,SC]= {[A,B] : A,B ∈SC}, then the preceding implication (1.1) exactly means
that [SC,SC]⊂OC. Then a natural questions arises: Can one use operators in
[SC,SC] to represent every operator in OC?

In this paper, we shall prove the following result, which gives an answer to
the preceding question.

Theorem 1.2. If C is a conjugation on H, then OC =[SC,SC]+[SC,SC].

Next let us review some results on the problem of determining which op-
erators can be written as commutators of operators in B(H). In the case that
dimH<∞, it was proved in [1] that an operator T∈B(H) is a commutator of two
operators in B(H) if and only if tr T=0. In the case that dimH=∞, Brown and
Pearcy [5] proved that an operator T∈B(H) is a commutator of two operators in
B(H) if and only if T 6=λI+K for any λ∈C\{0} and any compact operator K.

Note that there exists no operator T in OC such that T =λI+K for some λ∈
C\{0} and some compact operator K; moreover, tr T=0 if T∈OC∩B1(H). Thus,
OC ⊂ [B(H),B(H)] for any complex Hilbert space H. It is natural to ask whether
the equality OC =[SC,SC] holds.



62 R. Dou, X. Ruan and S. Zhu / Commun. Math. Res., 41 (2025), pp. 59-68

In the sequel, we shall prove that [SC,SC] includes all finite-rank operators
in OC (see Lemma 2.2). It follows that OC = [SC,SC] provided dimH< ∞ (see
Corollary 2.2). However, we do not know whether this holds for any separable
complex Hilbert space H. Our proof of Theorem 1.2 depends on the result that
[SC,SC] contains all normal operators in OC (see the proof of Theorem 1.2).

2 Proof of main result

We first make some preparations for the proof of Theorem 1.2.

Lemma 2.1. Let C be a conjugation on H. If T∈OC is a normal operator with card σ(T)
=2, then there exist D, E∈SC with ‖D‖=1 and ‖E‖=‖T‖ such that T=DE−ED.

Proof. Note that CTC=−T∗. We have C(T−λ)C=−(T+λ)∗ for all λ∈C. Hence,

λ ∈ σ(T) if and only if −λ ∈ σ(T∗), which is equivalent to −λ ∈ σ(T). Since

card σ(T) = 2, we can find nonzero z0 ∈ C such that σ(T) = {z0,−z0}. Then

σ(T/z0)={1,−1}. Denote S=T/z0 . It suffices to prove the desired result for S.

Since S is still normal, we deduce that

S=

[

I1 0

0 −I2

]

ker(S−1)
ker(S+1)

,

where I1 is the identity operator on ker(S−1) and I2 is the identity operator on

ker(S+1).
Note that C(S∗+1)C=−(S−1). It follows that

C
(

ker(S−1)
)

=ker(S∗+1)=ker(S+1)

and hence

C
(

ker(S+1)
)

=ker(S−1).

Then C can be written as

C=

[

0 C2

C1 0

]

ker(S−1)
ker(S+1)

.

From C2= I (the identity operator on H), one can see that C1 :ker(S−1)→ker(S+
1) is conjugate-linear, invertible and C2 = C−1

1 . Also, note that dimker(S−1) =
dimker(S+1). For convenience, we denote H1=ker(S−1) and H2=ker(S+1).

Claim. There exists D1∈B(H2,H1) such that C1D1C1=D∗
1 .
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Choose a conjugation C3 on H2 and set D1 =C−1
1 C3. Then D1 ∈B(H2,H1) is

unitary and D∗
1 =C3C1. One can verify that

C1D1C1=C1

(

C−1
1 C3

)

C1=C3C1=D∗
1 .

Set

D=

[

0 D1

0 0

]

H1

H2
.

Then D∈B(H) and one can verify that CDC=D∗, that is, D∈SC. Furthermore,

one can check that [D,D∗]=S. Set E=D∗. Then D and E satisfy all requirements.

The proof is complete.

Corollary 2.1. Let C be a conjugation on H. If T∈OC is a diagonal operator, then there

exist D, E∈SC with ‖D‖=1 and ‖E‖=‖T‖ such that T=DE−ED.

Proof. Note that CTC=−T∗. We have C(T−λ)C=−(T+λ)∗ for all λ∈C. Hence,

C(ker (T+λ)∗)=ker (T−λ). It follows that λ∈σp(T) if and only if −λ∈σp(T∗)
if and only if −λ∈σp(T). Hence, without loss of generality, we may assume that

σp(T)\{0}={±λi : i=1,2,3,.. .}.

Note that T is diagonal. It follows that

H=kerT⊕

(

∞
⊕

i=1

ker(T−λi)

)

⊕

(

∞
⊕

i=1

ker(T+λi)

)

.

Denote H0 = kerT and Hi = ker(T−λi)⊕ker(T+λi) for each i ≥ 1. Then H=
⊕∞

i=0Hi. Clearly, each Hi reduces T. Denote Ti =T|Hi
, i=0,1,2,.. ..

Since

C
(

ker (T+λi)
)

=ker (T−λi)
∗=ker (T−λi),

it follows that

C
(

ker (T−λi)
)

=ker (T+λi)

and C(Hi)=Hi. Hence, each Hi reduces C. Also note that H0 reduces C. Denote

C0=C|kerT and Ci =C|Hi
for all i≥1. Then Ci is a conjugation on Hi, i=0,1,2,.. ..

From CTC=−T∗, one can see that CiTiCi =T∗
i , i=0,1,2,.. ..

Note that T|H0
= 0 and σ(T|Hi

)= {λi ,−λi} for each i≥ 1. Since Ti is normal,

by Lemma 2.1, we can find Di, Ei ∈SCi
with ‖Di‖= 1 and ‖Ei‖= ‖Ti‖ such that

Ti =[Di,Ei] for all i=0,1,2,.. ..

Set D =⊕∞

i=0Di and E=⊕∞

i=0Ei. Then one can check that D, E∈SC, ‖D‖= 1

and ‖E‖=‖T‖, moreover, T=DE−ED.
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Now we are ready to give the proof of Theorem 1.2.

Proof of Theorem 1.2. Clearly, OC is a linear subspace of B(H) and [SC,SC]⊂OC.

Then [SC,SC]+[SC,SC]⊂OC. It suffices to prove OC ⊂ [SC,SC]+[SC,SC].
Note that each operator T ∈OC is the sum of two normal operators in OC.

In fact, if T ∈OC, then one can check that T1 := (T+T∗)/2,T2 := (T−T∗)/2 are

normal operators, T1,T2 ∈ OC and T = T1+T2. Hence, it suffices to prove the

following claim.

Claim. [SC,SC] contains all normal operators in OC.

Choose a normal operator N ∈OC. We shall show that N ∈ [SC,SC]. We let

EN(·) denote the projection-valued spectral measure corresponding to N. Denote

Σ = {α ∈ C : Im α > 0}∪{α ∈ C : Im α = 0,Re α > 0}. Since CNC =−N∗, by [21,

Theorem 2.2], it follows that

C
(

ran EN(σ)
)

= ran EN(−σ),

where σ=Σ∩σ(N) and −σ={z∈C :−z∈σ}. Furthermore,

C
(

ran EN(−σ)
)

= ran EN(σ).

Note that

C(kerN)=kerN∗=kerN,

H=kerN⊕EN(σ)⊕EN(−σ).

Then N and C can be written as

N=





0 0 0

0 N1 0

0 0 N2





kerN

EN(σ)
EN(−σ)

, C=





C0 0 0

0 0 C2

0 C1 0





kerN

EN(σ)
EN(−σ)

.

Then C0 is a conjugation on kerN, and both C1 : EN(σ) −→ EN(−σ) and C2 :

EN(−σ)−→EN(σ) are conjugate-linear, surjective isometries. From C=C−1, one

can see that C2 =C−1
1 . Also, one can see from CN∗C=−N that C2N2C1 =−N∗

1 .

Thus, N2=−C1N∗
1 C2=−C1N∗

1 C−1
1 .

The rest of the proof is divided into two cases. If N1 is a diagonal operator,

then so is N2, which implies that N is diagonal. By Corollary 2.1, N ∈ [SC,SC].
Next we consider the case that N1 is not a diagonal operator. Since N1 is normal,

we deduce that N1 6=λI+K for any λ∈C\{0} and any compact K. By [5], there

exist D̃,Ẽ∈B(EN(σ)) such that [D̃,Ẽ]=N1.
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Set

D=





0 0 0

0 D̃ 0

0 0 C1D̃∗C2





kerN

EN(σ)
EN(−σ)

, E=





0 0 0

0 Ẽ 0

0 0 C1Ẽ∗C2





kerN

EN(σ)
EN(−σ)

.

Direct calculations show that D, E∈SC and

[C1D̃∗C2,C1Ẽ∗C2]=C1[D̃
∗,Ẽ∗]C2=−C1[D̃,Ẽ]∗C2=−C1N∗

1 C2.

Hence,

[D,E]=0⊕N1⊕(−C1N∗
1 C2)=0⊕N1⊕N2=N.

This completes the proof.

Lemma 2.2. Let C be a conjugation on H. If T∈OC is of finite rank, then T∈ [SC,SC].

Proof. Set M= ran T+ran T∗. Clearly, M is a closed subspace of H and M
reduces T. Also one can check that C(M)⊂M and C(M⊥)⊂M⊥. Thus, T and

C can be written as

T=

[

A 0

0 0

]

M
M⊥, C=

[

C0 0

0 C1

]

M
M⊥,

where C0 is a conjugation on M and C1 is a conjugation on M⊥. Note that

C0AC0=−A∗.

Suppose that dimM=n and we can choose an orthonormal basis {e1,e2,··· ,en}
of M such that C0ei=ei, i=1,2,.. .,n (see [16]). We assume relative to {e1,e2,··· ,en},

A can be written as

A=











a1,1 a1,2 ··· a1,n

a2,1 a2,2 ··· a2,n
...

...
. . .

...

an,1 an,2 ··· an,n











e1

e2
...

en

.

For i, j∈{1,2,.. .,n}, note that

aj,i = 〈Aei,ej〉= 〈−C0A∗C0ei,ej〉= 〈−C0 A∗ei,ej〉

=−〈C0ej,A
∗ei〉=−〈ej,A

∗ei〉

=−〈Aej,ei〉=−ai,j.

We define

ci,j=







ai,j

i− j
, i 6= j,

0, i= j.
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Hence, ci,j= cj,i for i, j∈{1,2,.. .,n}. We define D1, E1∈B(M) as

D1=











1

2
. . .

n











e1

e2
...

en

, E1=











c1,1 c1,2 ··· c1,n

c2,1 c2,2 ··· c2,n
...

...
. . .

...

cn,1 cn,2 ··· cn,n











e1

e2
...

en

.

One can verify that C0D1C0=D∗
1 and C0E1C0=E∗

1 , moreover, A=D1E1−E1D1.

Define

D=

[

D1 0

0 0

]

M
M⊥, E=

[

E1 0

0 0

]

M
M⊥.

Clearly, D, E∈SC. Also, one can check that T=DE−ED.

Corollary 2.2. Let C be a conjugation on H. If dimH<∞, then OC =[SC,SC].
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