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Abstract. In the paper, a reduced basis (RB) method for time-dependent nonlo-
cal problems with a special parameterized fractional Laplace kernel function is
proposed. Because of the lack of sparsity of discretized nonlocal systems com-
pared to corresponding local partial differential equation (PDE) systems, model
reduction for nonlocal systems becomes more critical. The method of snapshots
and greedy (MOS-greedy) algorithm of RB method is developed for nonlocal
problems with random inputs, which provides an efficient and reliable approx-
imation of the solution. A major challenge lies in the excessive influence of the
time domain on the model reduction process. To address this, the Fourier trans-
form is applied to convert the original time-dependent parabolic equation into
a frequency-dependent elliptic equation, where variable frequencies are inde-
pendent. This enables parallel computation for approximating the solution in
the frequency domain. Finally, the proposed MOS-greedy algorithm is applied
to the nonlocal diffusion problems. Numerical results demonstrate that it pro-
vides an accurate approximation of the full order problems and significantly
improves computational efficiency.
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1 Introduction

Historically, continuum models were predominantly described by partial differ-
ential equations (PDEs) based on local information. Later, the study of complex
systems with singularities and anomalies, as well as those involving nonlocal in-
teractions, became the focus. Nonlocal equations have been shown to provide sig-
nificantly better models than their local counterparts in various applications. Ex-
amples include optimal control problems involving the Bellman equation derived
from Levy processes, denoising models in nonlocal image processing [4, 26], and
particle systems modeling the nonlocal porous medium equation, the Hamilton-
Jacobi equation with fractional diffusion [10,27], and conservation laws with frac-
tional diffusion [7], among others.

Initial research on nonlocal models focused primarily on scalar problems [26,
30], with applications in image processing and steady-state diffusion, respec-
tively. Subsequently, Du et al. established a more systematic mathematical frame-
work for nonlocal problems parallel to classical local PDEs. They developed the
nonlocal vector calculus [15, 16], and extensive research followed on functional
analysis of nonlocal spaces, operators, and calculus of variations [21, 32, 41, 42].
Since exact solutions to nonlocal models are generally unavailable, numerical so-
lutions posed new challenges for algorithm development and numerical analysis.
This necessitated the development of robust and adaptive algorithms, as well as
various numerical approximation schemes for nonlocal models [18–20]. Various
applications of nonlocal models and connections to existing mathematical studies
and numerical techniques have enabled nonlocal modeling to bridge the gap be-
tween multiscale modeling, analysis, and simulation [13,17,43]. Further rigorous
mathematical analysis of nonlocal models was provided in [2,22]. In recent years,
nonlocal models have been used in many areas, such as phase transition [2, 23],
nonlocal peridynamic models [1,40], nonlocal dispersal models [6,11] and option
pricing in models with jumps [38].

Although nonlocal modeling can complement or replace traditional local mod-
eling approaches based on PDEs, a priori for the value of the parameters in non-
local kernel functions is unknown in practical scenarios involving modeling and
prediction. In such case, an approximate solution is required not only as a func-
tion of a spatial variable but also as a function of model parameters. Compared to
local models, the coefficient matrix of the discrete system for nonlocal models is
typically dense, leading to higher computational costs. Therefore, reduced order
models (ROMs) are necessary to approximate solutions efficiently, reducing com-
putational costs. In this paper, the primary focus and challenge lie in selecting
an appropriate model reduction method and accurately capturing the essential
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features of the original system. For solving parameter-dependent PDE problems,
we employ the reduced basis (RB) method, which is a very efficient numerical
approximation method.

In practice, ROMs are widely used to replace the full order model with lower
numerical complexity [8, 37, 39, 45]. For different problems, the strategies of con-
structing ROMs varied. The RB approach projects the full order model onto a
subspace spanned by selected basis functions. These basis functions are derived
from the singular value decomposition (SVD) of a set of full order solutions cor-
responding to chosen parameters. The first theoretical analysis of RB methods re-
lated to the continuation method for parametric equations was provided by Fink
et al. [24, 25]. Through the construction of basis functions, they systematically di-
vided the calculation process into offline and online phases. For ROMs, posterior
error estimates were employed to ensure the reliability of numerical solutions.
However, in earlier methods, the approximate space tended to be fairly local due
to the lack of a posterior error estimator and an efficient sampling procedure, and
the parameters were often low-dimensional. Thus, significant efforts in the RB
framework have focused on posterior error estimation procedures, particularly
rigorous error bounds and efficient sampling strategies for outputs of interest
in high-dimensional problems [12,44]. Error estimators play an important role in
the sampling process of greedy algorithms [35,36], which are similar to the proper
orthogonal decomposition (POD) method but methodologically distinct [3]. The
POD does not select parameters. The greedy algorithm is typically applied to the
multidimensional parameter domain, while the POD is most commonly applied
to the one-dimensional temporal domain. The effective combination of these two
techniques in parameter-time domains is often used to address parabolic prob-
lems [33, 35].

In recent work on model reduction methods for nonlocal problems, Guan et al.
developed RB approximations for nonlocal diffusion equations with affine ran-
dom coefficients and established efficiency estimates of the proposed greedy al-
gorithms [28]. Burkovska et al. developed the RB method for parameterized prob-
lems driven by spatially nonlocal integral operators with parameter-dependent
kernels. For problems with nonaffine, singular, or discontinuous kernels, the reg-
ularity and differentiability results with respect to parameters were derived and
then used to construct affine approximations of the kernels by local polynomi-
als [29]. However, these methods were primarily applied to model reduction for
steady-state nonlocal equations with random inputs. For dynamic nonlocal diffu-
sion equations, D’Elia et al. developed a model reduction framework [47], where
the parameters were derived from the equation coefficients. This differs from our
approach, where the parameters are derived from the kernel function.
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In this work, we focus on developing the RB approximations for parame-
terized time-dependent nonlocal problems. The form of nonlocal kernel func-
tions with random parameters is detailed in Section 2. Before the reduction, we
employ the Fourier transform to convert the original time-dependent parabolic
equation into a frequency-dependent elliptic equation [31]. Without this trans-
formation, the full order model after numerical discretization was directly used
for the model reduction. The results contradicted our expectations. We observed
that the temporal term significantly influenced the model reduction. When using
the Fourier transform, the influence of time is avoided, and the original recur-
sive relationship is converted into parallel algorithms. This enhances compu-
tational efficiency. We employ the method of snapshots (MOS) [46] to construct
lower-dimensional basis functions by computing the eigenvectors of the snapshot
covariance matrix. The RB method then projects the solution space onto a low-
dimensional subspace spanned by the basis functions. The efficiency of the RB
method is enhanced through offline-online computational decomposition. In the
offline phase, snapshots and basis functions are computed. In the online phase,
solutions are repeatedly computed for random parameters using ROMs. To ob-
tain snapshots, traditional numerical methods such as the finite volume method
(FVM), finite difference method (FDM), finite element method (FEM), and their
variations can be employed to solve full order models. Furthermore, the inte-
gration kernel in this paper is nonaffine, singular, and discontinuous. For non-
affine parameter dependencies and nonlinear terms, we adopt the Chebyshev
interpolation [29] and the discrete empirical interpolation method (DEIM) [9]. To
the end, we apply the Fourier transform to the time-dependent nonlocal model
and develop a nonlocal model reduction method by integrating the nonlocal fre-
quency equation into the RB framework.

The rest of the paper is organized as follows. In Section 2, we introduce
the parameterized time-dependent nonlocal problems and variational formula-
tions. The specific reduction procedure and posterior error estimates are shown
in Section 3. In Section 4, the MOS-greedy algorithm for the parameterized time-
dependent nonlocal problems is proposed to construct the basis functions. Nu-
merical examples with linear and nonlinear terms are presented in Section 5. Fi-
nally, Section 6 gives some conclusions and comments.

2 Preliminaries and notations

In this section, we introduce the notion of nonlocal problems and propose a con-
cept of frequency transformations when they are applied to time-dependent non-
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local problems. Moreover, this section covers the numerical approximation meth-
ods for frequency transformation and inverse transformation, as well as specific
forms for handling nonaffine parameters.

2.1 Nonlocal diffusion model

In this paper, we propose and analyze the following parameterized nonlocal and
nonlinear diffusion equation with the volume-constrained:





∂u(x,t,s)

∂t
=

2(1−s)

δ2−2s
Lδu(x,t,s)

+ f (x,t,s)+h
(

u(x,t,s),t,s
)
, x∈Ω, t∈ [0,T],

u(x,t,s)= g(x,t,s), x∈Γ, t∈ [0,T],

u(x,0,s)=u0, x∈Ω.

(2.1)

Here Ω=(a,b)⊂R is the bounded domain, Ω denotes the closure of Ω, x∈R is the
spatial variable, t∈ [0,T] is the temporal variable with T>0 as the final computa-
tion time, and s∈P s⊂ (0,1) is the parametric variable. The terms f and h repre-
sent the linear and nonlinear components, respectively, while g is the boundary
condition and u0 is the initial condition. The set Γ=Ω′\Ω=[a−δ,a]∪[b,b+δ] is
illustrated in Fig. 1. The operator Lδ is nonlocal, and the parameter δ > 0 rep-
resents the range of nonlocal interaction. To account for nonlocal spatial inter-
actions, nonlocal operators usually use integral forms to avoid explicitly using
spatial derivatives. The nonlocal operator is specifically expressed as follows:

−Lδu(x,t,s)=2
∫

Ω

(
u(x,t,s)−u(x′ ,t,s)

)
γ(x,x′;s)dx′, (2.2)

where γ(x,x′;s) is a nonnegative symmetric kernel function. There is a detailed
description of such kernel functions in [15, 29], where the well-posedness of all
these kernels for nonlocal problems has been demonstrated.

a−δ a x−δ x x+δ b b+δ

volume constraint
imposed

volume constraint
imposed

neighborhood of x
defined by horizon δ

Ω

Ω′

Figure 1: The domain of definitions for nonlocal problems.
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There are two main types of kernel functions, one is called a general truncated
kernel function, for δ> 0, we define a ball Bδ(x) centered at x with radius δ, i.e.,
Bδ(x) :={x′∈R : |x−x′|≤δ}. Then for 0<δmin<δmax<∞ and all x∈R satisfy





γ(x,x′;δ)≥0, ∀x′∈Bδ(x),

γ(x,x′;δ)=0, ∀x′∈R\Bδ(x),

γ(x,x′;δ)≥γ0>0, ∀x′∈Bδmin/2
(x),

(2.3)

where γ0 is a nonnegative constant. The other is a special focus in this paper
and will lie on fractional Laplace-type kernels, where the kernel parameter is
a fractional power s∈ (0,1) and defined as follows:

γ(x,x′;s)=





1

|x−x′|1+2s
, x′∈Bδ(x),

0, otherwise.
(2.4)

Here δ is a given parameter. When δ→+∞, (2.4) is a classical fractional Laplace
kernel and −Lδ reduces to the fractional Laplace operator (−∆)s up to the con-
stant cs/2 where

cs=
22ssΓ(s+1/2)

π1/2Γ(1−s)
, (2.5)

see [15] for more details. When δ→0, the nonlocal operator −(2(1−s)/δ2−2s)Lδ

reduces to the local Laplace operator −∆. The local limit form of the nonlocal
problem (2.1) is given by






∂u(x,t,s)

∂t
=−∆u(x,t,s)

+ f (x,t,s)+h
(

u(x,t,s),t,s
)
, x∈Ω, t∈ [0,T],

u(x,t,s)= g(x,t,s), x∈∂Ω, t∈ [0,T],

u(x,0,s)=u0, x∈Ω.

(2.6)

In [14], the convergence of approximate nonlocal solutions to the solution of the
Laplace equation is established. By comparing Eqs. (2.1) and (2.6), we observe
that linear integral operators are used in nonlocal models, in contrast to the lin-
ear differential operators employed in local diffusion models. Additionally, the
Dirichlet condition imposed on the boundary in local models becomes a volume
constraint in nonlocal problems.
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2.2 The frequency space of nonlocal problems

Traditionally, (2.1) is solved in space-time by time discretization such as Crank-
Nicholson or Runge-Kutta method. Although these methods can effectively solve
a wide range of practical problems, they rely on recursive temporal relationships
and lack natural parallelizability. To reduce computation costs, we apply the fre-
quency domain method to solve time-dependent nonlocal problems. This ap-
proach enables efficient parallel computation due to the mutual independence of
frequencies. One of the frequency domain methods is the Fourier transform. The
Fourier transform and Fourier inversion of a function u(·,t) in time are given by

û(·,ω)=
∫ ∞

−∞
u(·,t)exp(−iωt)dt,

u(·,t)= 1

2π

∫ ∞

−∞
û(·,ω)exp(iωt)dω.

The Fourier transformation is used for time and then converts the original prob-
lem (2.1) into a set of complex elliptic equations that depend on the frequency ω,
i.e.,

iωû(x,ω,s)=
2(1−s)

δ2−2s
Lδû(x,ω,s)+ f̂ (x,ω,s)+ ĥ(û,ω,s), (2.7a)

û(x,ω,s)= ĝ(x,ω,s), x∈Γ, (2.7b)

where f ,h and u are extended to be zero when t < 0 and t > T for the Fourier
transformation. Let Ω⊂R be an open set for s∈ (0,1). The real-valued fractional
Sobolev space Hs(Ω) is defined as

Hs(Ω) :=

{
u∈L2(Ω) : |u|2Hs (Ω)=

∫

Ω

∫

Ω

|u(x)−u(x′)|2
|x−x′|1+2s

dx′dx<∞

}
.

Equipped with the norm

‖·‖Hs(Ω)=‖·‖L2(Ω)+|·|Hs(Ω),

Hs(Ω) forms a Hilbert space. In this paper, assume that an arbitrary complex
value function û=ûr+iûi, where ûr and ûi represent the real and imaginary parts,
respectively. The inner product and norm in the complex space are defined as

(û,v̂)c :=
∫

Ω
û ¯̂vdx=(û, ¯̂v)L2 , ‖û‖c :=

(
‖ûr‖2

L2+‖ûi‖2
L2

) 1
2
.
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Let

Hs
c(Ω) :=Hs(Ω)×Hs(Ω), L2

c(Ω) :=L2(Ω)×L2(Ω),

we define the space incorporating the volume constraints, given by

Hs
Ω :={û∈Hs

c(Ω) : û= ĝ on Γ} .

The bilinear form is defined as

a(û,v̂;s)c :=
∫∫

Ω×Ω

(
û(x,ω,s)− û(x′,ω,s)

)(
v̂(x)− v̂(x′)

)
γ(x,x′;s)d(x′,x). (2.8)

We define the spaces

X :=
{

û∈L2(Ω∪Γ) : a(û,û;s)c<+∞
}

,

V :=
{

û∈X : û= ĝ on Γ
}

as a nonlocal frequency domain space and a constrained nonlocal frequency do-
main space with a fractional Laplace kernel, respectively. The inner product and
norm on V are defined as

(û,v̂)V := a(û,v̂;s)c, ‖û‖2
V =(û,û)V .

The fractional Laplace kernel satisfies the nonlocal Poincaré inequality [15]

‖û‖L2(Ω∪Γ)≤Cp‖û‖V , ∀û∈V, (2.9)

where Cp>0 is the Poincaré constant.

From the nonlocal spatial definition and the nonlocal Poincaré inequality, the
nonlocal space V is equivalent to Hs

Ω, which implies

C‖û‖Hs
Ω
≤‖û‖V≤‖û‖Hs

Ω
. (2.10)

By this equivalence, the bilinear form a(·,·;s)c defined in (2.8) is continuous and
coercive in V×V, that is, for ∀û,v̂∈V, ∃β0>0 such that

α(s) :=sup
û∈V

sup
v̂∈V

a(û,v̂;s)c

‖û‖V‖v̂‖V
<+∞, ∀s∈ (0,1), (2.11)

β(s) := inf
û∈V

a(û,û;s)c

‖û‖2
V

≥β0, ∀s∈ (0,1). (2.12)
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2.3 Variational formulation for the nonlocal problems

The finite element discretization of the nonlocal frequency domain model (2.7)
is based on the weak form of the problem. In this section, we present the weak
form of the nonlocal equation. The variational formulation can be defined in
a way similar to the local model, except that the volume constraint replaces the
boundary condition. This ensures the regularity of the nonlocal Dirichlet prob-
lem.

Multiplying Eq. (2.7a) by the test function v̂(x)∈V for ∀ω∈R, then the integral
form in the bounded domain Ω is given by

∫

Ω
iωû(x,ω,s) ¯̂v(x)dx+

4(1−s)

δ2−2s

∫

Ω

¯̂v(x)dx

×
∫

Bδ(x)

(
û(x,ω,s)− û(x′,ω,s)

)
γ(x,x′;s)dx′−

∫

Ω
ĥ(û,ω,s) ¯̂v(x)dx

=
∫

Ω
f̂ (x,ω,s) ¯̂v(x)dx. (2.13)

Note that the double integral term in (2.13) leads to an asymmetric finite element
stiffness matrix. To avoid the asymmetric matrix, Eq. (2.13) by using the nonlocal
Green’s first identity derived in [16] (or by direct calculation) is equivalent to

∫

Ω
iωû(x,ω,s) ¯̂v(x)dx+

2(1−s)

δ2−2s

×
∫

Ω

∫

Bδ(x)

(
û(x,ω,s)− û(x′,ω,s)

)(
v̂(x)− v̂(x′)

)
γ(x,x′;s)dx′dx

−
∫

Ω
ĥ(û,ω,s) ¯̂v(x)dx

=
∫

Ω
f̂ (x,ω,s) ¯̂v(x)dx. (2.14)

Therefore, the weak form of this nonlocal problem is as shown in Eq. (2.15). For
a given ĝ(x,ω,s) and ∀ω∈R, there exists a û(x,ω,s)∈V such that

iω(û,v̂)c+
2(1−s)

δ2−2s
a(û,v̂;s)c−(ĥ,v̂)c=( f̂ ,v̂)c, ∀v̂∈V, (2.15a)

û(x,ω,s)= ĝ(x,ω,s), x∈Γ. (2.15b)

Let VN⊂V be the FE approximation space, whereN is sufficiently large. Assume
VN=Ph

⊕
iPh, where Ph is the standard piecewise linear real-valued finite element
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subspace of Hs
Ω with dim(Ph)=N . Let {φj}Nj=1 be a set of the nodal basis of Ph.

For a given s∈ (0,1), there exists ûN (ω,s)= ûN (x,ω,s)∈VN satisfying

iω
(
ûN (ω,s),v̂

)
c
+

2(1−s)

δ2−2s
a
(
ûN (ω,s),v̂;s

)
c

−
(

ĥ
(
ûN (ω,s)

)
,v̂
)

c
=( f̂ ,v̂)c, ∀v̂∈VN . (2.16)

For ∀ω∈R, ûN (ω,s)∈VN =Ph
⊕

iPh can be expressed as

ûN (ω,s)=
N
∑
j=1

uR
j (ω,s)φj+i

N
∑
j=1

uI
j (ω,s)φj. (2.17)

Combining Eqs. (2.16) and (2.17), we have the following nonlinear system of or-
der 2N :

[
Mω+A −Mω+A
Mω−A Mω+A

][
uR(ω,s)
uI(ω,s)

]
−
[

M M
−M M

][
hR

hI

]
=

[
f R+ f I

− f R+ f I

]
, (2.18)

where

Mω(p,q)=ω(φp ,φq)c, A(p,q)=
2(1−s)

δ2−2s
a(φp,φq;s)c,

M(p,q)=(φp ,φq)c, p,q=1,.. . ,N ,

and hR,h I, f R, f I∈R
N are given by

hR=ℜ(ĥ(u(ω,s)
)
, hI =ℑ(ĥ(u(ω,s)

)
,

f R(q)=( f̂ R ,φq)c, f I(q)=( f̂ I ,φq)c, q=1,.. .,N ,

where

u(ω,s)=
{

ûNq (ω,s)
}N

q=1
, f̂ = f̂ R+i f̂ I ,

uR(ω,s)=
{

uR
q (ω,s)

}N
q=1

, uI(ω,s)=
{

uI
q(ω,s)

}N
q=1

.

To convert frequency variables into time variables, the inverse Fourier trans-
form will be used. For the inverse Fourier transform, we adopt the truncated
integral interval [0, ω∗] with a sufficiently large ω∗ > 0 and use the nodes and
weights of the Legendre-Gauss-Lobatto (LGL) integration rule to obtain û(ω)=
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û(x,ω,s) [31]. Then the time domain real-valued solution u(x,t,s) of (2.1) is then
approximated as

u(x,t,s)=
1

π
ℜ
(

Nω

∑
j=1

ûN (x,ωj,s)exp(iωjt)wj

)
, (2.19)

where ωj and wj are the LGL interpolation nodes and corresponding weights on
the interval [0, ω∗], respectively.

2.4 Affine approximation

In this paper, we consider the fractional Laplace kernel defined in Eq. (2.4). The
dependence on the parameter s is nonaffine in this case, the nature of the singu-
larity changes with the parameter. This leads to the different regularity of the
solution. Furthermore, the integration kernel is discontinuous at |x−x′|= δ and
has a singularity at |x−x′|→0. This prevents the direct application of empirical
interpolation, as it is designed for continuous and bounded functions. Although
the continuity requirement can be relaxed using a generalized empirical inter-
polation method, selecting an appropriate interpolating functional in the current
context is non-trivial. To obtain the affine form of the parameters for the kernel
function, we employ local polynomials to approximate the nonaffine form [29],
i.e., splitting the interval P s :=[smin,smax]⊂ [0,1],

0< smin := s0< s1< ···< sM =: smax<∞, M∈N.

Then for a given δ∈ (0,∞), s∈ (0,1), and sufficiently regular û,v̂, there is

a(û,v̂;s)c≈ ãM(û,v̂;s)c :=
M

∑
m=0

Θs
m(s)a(û,v̂;sm)c, Θs

m(s) := ∏
j=0
j 6=m

s−sj

sm−sj
, (2.20)

where sm is the maximum value of Chebyshev in the interval [smin,smax], that is,

sm=
1

2(smin+smax)
− 1

2(smax−smin)
cos
( m

M
π
)

, m=0,.. .,M.

In practice, the coefficients Θs
m may be negative. This leads to the coercive condi-

tion of ãM(·,·;·)c on V×V is failed. To address this issue, we introduce

ãM,ρ(û,v̂;s)c= ãM(û,v̂;s)c+ρa(û,v̂; ŝ)c (2.21)
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with a regularization parameter ρ>0, where

ŝ=
s1+s2

2
=






smin+
1

4
− ε

2
, if smin≤

1

2
,

smin+1

2
− ε

2
, otherwise

for arbitrarily small ε>0.

Remark 2.1. In fact, the regularization parameter ρ > C(δ)σM+1, where C(δ) is

a constant depending on δ. This parameter ensures coercivity. When σ< 1, this

term is numerically negligible. In order to ensure σ<1, we require that

s1= smin, s2= smin+
1

2
−ε, for smin≤

1

2
and smax−smin<

1

5
,

s1= smin, s2=1−ε, for smin>
1

2
and smax−smin<

2

3(1−smax)
.

In the practical application, it is not possible that every interval can meet ex-

actly the above requirements. To address this, we can divide the large intervals

[smin,smax] into several subintervals [s
j
min,s

j
max], each of which is connected end-

to-end, that is, s
j−1
max = s

j
min, so that as long as the subintervals meet the above

requirements.

3 Reduced basis methods

ROMs have been widely used to reduce the computational cost of approximating
solutions to local PDEs. However, the model reduction of nonlocal models is lim-
ited, such as the models considered in this paper. The nonlocal model equations
are parameterized time-dependent problems. In this paper, the nonlocal PDEs are
spatially discretized using the FEM. Furthermore, the methods discussed below
are also applicable to other discretization methods.

The underlying discrete system is composed of a band matrix with a band-
width and a nonlocal interaction radius. Thus, solving the problems (2.1) with
random input parameters by FEM requires expensive computation. In order to
reduce the computational cost, we construct a ROM. In this section, we describe
the construction of the RB approximation for (2.16). Given a positive integer
Nmax, we replace VN with a low-dimensional RB approximation space VNN ⊂VN ,
where N=1,2,.. .,Nmax. These spaces are assumed to be nested (or hierarchical),
i.e.,

VN1 ⊂VN2 ⊂···⊂VNNmax
⊂VN .
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The idea of the RB method is to construct the approximate solution of problem
(2.16) in the low-dimensional subspace VNN (N≪N ). A sufficiently small N en-
sures low computational cost. However, several important conditions must be
satisfied when using RB methods. First, the affine-parameter dependency of the
problem is necessary to perform effective parameter-dependent operations in the
online phase. Second, the separation of parameters and variables needs to be re-
alized by using proper methods for the nonlinear terms. This can improve the
online calculation. Finally, a computable posterior error estimate is necessary to
enable an effective and accurate selection of input parameters in the offline phase.

3.1 Galerkin projection and offline-online procedure

We now consider the ROM. The RB approximation is defined as the Galerkin pro-
jection onto these low-dimensional subspaces, i.e., for any given s∈P s , uN(ω,s)∈
VNN satisfies

iω
(
uN(ω,s),v

)
c
+

2(1−s)

δ2−2s
ãM,ρ

(
uN(ω,s),v;s

)
c

−
(

ĥ
(
uN(ω,s),ω,s

)
,v
)

c
=( f̂ ,v)c. (3.1)

Let {ζR
p }N

p=1 and {ζ I
p}N

p=1 denote the real and imaginary basis functions of VNN ,

respectively. Then the solutions uN(ω,s) can be represented as

uN(ω,s)=
N

∑
p=1

ζR
p uR

N(ω,s)+i
N

∑
p=1

ζ I
puI

N(ω,s). (3.2)

Choosing the test functions v = ζR
q +iζ I

q, 1 ≤ q ≤ N and combining with (3.2),
Eq. (3.1) can be represented as

iω
N

∑
p=1

(
ζR

p ,ζR
q

)
c
uR

N(ω,s)+ω
N

∑
p=1

(
ζR

p ,ζ I
q

)
c
uR

N(ω,s)

−ω
N

∑
p=1

(
ζ I

p,ζR
q

)
c
uI

N(ω,s)+iω
N

∑
p=1

(
ζ I

p,ζ I
q

)
c
uI

N(ω,s)

+
N

∑
p=1

M

∑
m=0

Θs
m(s)

2(1−s)

δ2−2s
a
(

ζR
p ,ζR

q ;sm

)
c
uR

N(ω,s)

+ρ
N

∑
p=1

2(1−s)

δ2−2s
a
(
ζR

p ,ζR
q ; ŝ
)

c
uR

N(ω,s)
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−i
N

∑
p=1

M

∑
m=0

Θs
m(s)

2(1−s)

δ2−2s
a
(
ζR

p ,ζ I
q;sm

)
c
uR

N(ω,s)

−iρ
N

∑
p=1

2(1−s)

δ2−2s
a
(

ζR
p ,ζ I

q; ŝ
)

c
uR

N(ω,s)

+i
N

∑
p=1

M

∑
m=0

Θs
m(s)

2(1−s)

δ2−2s
a
(
ζ I

p,ζR
q ;sm

)
c
uI

N(ω,s)

+iρ
N

∑
p=1

2(1−s)

δ2−2s
a
(

ζ I
p,ζR

q ; ŝ
)

c
uI

N(ω,s)

+
N

∑
p=1

M

∑
m=0

Θs
m(s)

2(1−s)

δ2−2s
a
(

ζ I
p,ζ I

q;sm

)
c
uI

N(ω,s)

+ρ
N

∑
p=1

2(1−s)

δ2−2s
a
(
ζ I

p,ζ I
q; ŝ
)

c
−
(

ĥ

(
N

∑
p=1

ζR
p uR

N(ω,s)

)
,ζR

q

)

c

+i

(
ĥ

(
N

∑
p=1

ζR
p uR

N(ω,s)

)
,ζ I

q

)

c

−i

(
ĥ

(
N

∑
p=1

ζ I
puI

N(ω,s)

)
,ζR

q

)

c

−
(

ĥ

(
N

∑
p=1

ζ I
puI

N(ω,s)

)
,ζ I

q

)

c

=
(

f̂ R,ζR
q

)
c
+
(

f̂ I ,ζ I
q

)
c
−i
(

f̂ R,ζ I
q

)
c
+i
(

f̂ I ,ζR
q

)
c
.

The equivalent matrix form of the above equation is



Mω
1 +

M

∑
m=0

Θs
m(s)AR

N+ρAs
R
N −Mω

2 +
M

∑
m=0

Θs
m(s)A I

N+ρAs
I
N

MωR
N −

M

∑
m=0

Θs
m(s)A1−ρAs1 Mω I

N +
M

∑
m=0

Θs
m(s)A2+ρAs2



[

uR
N

uI
N

]

−
[

hR
N h I

N

−h1 h2

]
=

[
f R

N+ f I
N

− f 1+ f 2

]
, (3.3)

where

MωR
N (p,q)=ω

(
ζR

p ,ζR
q

)
c
, Mω I

N (p,q)=ω
(

ζ I
p,ζ I

q

)
c
,

Mω
1 (p,q)=ω

(
ζR

p ,ζ I
q

)
c
, Mω

2 (p,q)=ω
(

ζ I
p,ζR

q

)
c
,

AR
N(p,q)=

2(1−s)

δ2−2s
a
(

ζR
p ,ζR

q ;sm

)
c
, AI

N(p,q)=
2(1−s)

δ2−2s
a
(
ζ I

p,ζ I
q;sm

)
c
,
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As
R
N(p,q)=

2(1−s)

δ2−2s
a
(
ζR

p ,ζR
q ; ŝ
)

c
, As

I
N(p,q)=

2(1−s)

δ2−2s
a
(
ζ I

p,ζ I
q; ŝ
)

c
,

A1(p,q)=
2(1−s)

δ2−2s
a
(
ζR

p ,ζ I
q;sm

)
c
, A2(p,q)=

2(1−s)

δ2−2s
a
(

ζ I
p,ζR

q ;sm

)
c
,

As1(p,q)=
2(1−s)

δ2−2s
a
(
ζR

p ,ζ I
q; ŝ
)

c
, As2(p,q)=

2(1−s)

δ2−2s
a
(

ζ I
p,ζR

q ; ŝ
)

c
,

hR
N(p,q)=

(
ĥ

(
N

∑
p=1

ζR
p uR

N(ω,s)

)
,ζR

q

)

c

, h I
N(p,q)=

(
ĥ

(
N

∑
p=1

ζ I
puI

N(ω,s)

)
,ζ I

q

)

c

,

h1(p,q)=

(
ĥ

(
N

∑
p=1

ζR
p uR

N(ω,s)

)
,ζ I

q

)

c

, h2(p,q)=

(
ĥ

(
N

∑
p=1

ζ I
puI

N(ω,s)

)
,ζR

q

)

c

,

p,q=1,.. .,N,

and

f R
N(q)=

(
f̂ R,ζR

q

)
c
, f I

N(q)=
(

f̂ I ,ζ I
q

)
c
,

f 1(q)=
(

f̂ R,ζ I
q

)
c
, f 2(q)=

(
f̂ I ,ζR

q

)
c
, q=1,.. .,N.

Since {φj}Nj=1 is a set of the finite element basis of VN and the basis functions

{ζ j}N
j=1 belong to the finite element space VN , we obtain

ζR
p =

N
∑
q=1

ZR
pqφR

q , ζ I
p =

N
∑
q=1

ZI
pqφI

q, 1≤ p≤N.

Let (ZR)(p,q)=ZR
pq and (Z I)(p,q)=ZI

pq , 1≤q≤N , then

MωR
N =(ZR)T MZR, Mω I

N =(Z I)T MZ I ,

Mω
1 =(ZR)T MZ I , Mω

2 =(Z I)T MZR,

AR
N =(ZR)T AsmZR, AI

N =(Z I)T AsmZ I ,

A1=(ZR)T AsmZ I , A2=(Z I)T AsmZR,

As
R
N =(ZR)T AŝZR, As

I
N =(Z I)T AŝZ I ,

As1=(ZR)T AŝZ I , As2=(Z I)T AŝZR,

uR
N =(ZR)TuR, uI

N =(Z I)TuI,

f R
N =(ZR)T f R, f I

N =(Z I)T f I ,

f 1=(Z I)T f R, f 2=(ZR)T f I ,
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where Asm = a(φp,φq;sm)c and Aŝ= a(φp,φq; ŝ)c, p,q=1,.. .,N . Replacing ĥ in (2.7)

by the affine approximation h̃ generated from the DEIM in Section 4.2, we get

HR
N =BR

Nℜ
(
ĥ(ZuN)

)
, H I

N =BI
Nℑ
(
ĥ(ZuN)

)
,

H1=B1ℜ
(
ĥ(ZuN)

)
, H2=B2ℑ

(
ĥ(ZuN)

)
,

where

BR
N =(ZR)T HR

(
PT

R HR

)−1
HT

R, BI
N =(Z I)T H I

(
PT

I H I

)−1
HT

I ,

B1=(Z I)T HR

(
PT

I HR

)−1
HT

R, B2=(ZR)T H I

(
PT

I H I

)−1
HT

I ,

Z=
[
ZR,Z I

]
, uN =

[
uR

N;uI
N

]
.

Eq. (3.3) can be written as the following matrix form:




Mω
1 +

M

∑
m=0

Θs
m(s)AR

N+ρAs
R
N −Mω

2 +
M

∑
m=0

Θs
m(s)A I

N+ρAs
I
N

MωR
N −

M

∑
m=0

Θs
m(s)A1−ρAs1 Mω I

N +
M

∑
m=0

Θs
m(s)A2+ρAs2



[

uR
N

uI
N

]

−
[

BR
N BI

N
−B1 B2

][ℜ
(
ĥ(ZuN)

)

ℑ
(
ĥ(ZuN)

)
]
=

[
f R

N+ f I
N

− f 1+ f 2

]
. (3.4)

Based on Eq. (3.4), the offline-online decomposition is realized. In the offline
phase, we only need to compute and store the s-independent quantities MωR

N ,

Mω I
N , Mω

1 , Mω
2 , AR

N, AI
N, As

R
N, As

I
N, A1, A2, As1, As2, BR

N, BI
N, B1, B2, f R

N, f I
N, f 1, f 2. In

the online phase, we only need to solve the low order equation (3.4) for each new
parameter value s and then obtain uR

N and uI
N.

3.2 Posterior error

In the RB space VNN , we use uN to approximate uN . In order to verify the error
caused by the reduction, the relevant posterior error is derived in this section. For
∀v∈VN , the residual is defined as

r(v;s) :=( f̂ ,v)c+
(
h̃(uN(s)),v

)
c
− 2(1−s)

δ2−2s
ãM,ρ

(
uN(s),v;s

)
c
−iω

(
uN(s),v

)
c
. (3.5)

When v∈VNN , the residual is 0. By the Riesz representation theory, there exists

ê(s)∈VN such that (
ê(s),v

)
VN = r(v;s), ∀v∈VN . (3.6)
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Then we introduce the dual norm of the residual

ǫN := sup
v∈VN

r(v;s)

‖v‖VN
=‖ê(s)‖VN , (3.7)

this shall prove to be important for the offline-online stratagem developed below.

The error estimator [35] for the solution is defined as

∆N(s)=‖ê(s)‖VN /
(

βNLB(s)
)1/2

, (3.8)

where

0<βNLB(s)≤βN (s)= inf
v∈VN

ãM,ρ(v,v;s)c

‖v‖2
VN

.

Combining Eq. (3.5), (2.20), (2.21) and (3.2), the residual can be expressed as

r(v;s) :=( f̂ ,v)c+
(
h̃(uN(s),v

)
c
− ãM

(
uN(s),v;s

)
c

−ρa
(
uN(s),v; ŝ

)
c
−iω

(
uN(s),v

)
c

=( f̂ ,v)c+

(
h̃

(
N

∑
p=1

ζpuN,p(s)

)
,v

)

c

− 2(1−s)

δ2−2s

N

∑
p=1

(
M

∑
m=0

Θs
m(s)a(ζp ,v;sm)cuN,p(s)

)

−ρ
2(1−s)

δ2−2s

N

∑
p=1

a(ζp ,v; ŝ)cuN,p(s)−iω
N

∑
p=1

(ζp,v)cuN,p(s). (3.9)

By Eqs. (3.9) and (3.6), we have

(
ê(s),v

)
VN =( f̂ ,v)c+

(
h̃

(
N

∑
p=1

ζpuN,p(s)

)
,v

)

c

− 2(1−s)

δ2−2s

N

∑
p=1

(
M

∑
m=0

Θs
m(s)a(ζp ,v;sm)cuN,p(s)

)

−ρ
2(1−s)

δ2−2s

N

∑
p=1

a(ζp ,v; ŝ)cuN,p(s)−iω
N

∑
p=1

(ζp,v)cuN,p(s). (3.10)
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This implies that

ê(s)=C f̂ +Ch̃+
2(1−s)

δ2−2s

N

∑
p=1

(
M

∑
m=0

Θs
m(s)uN,p(s)Lp,m

sm

)

+ρ
2(1−s)

δ2−2s

N

∑
p=1

uN,p(s)Lp
ŝ +iω

N

∑
p=1

uN,p(s)X p , (3.11)

where C f̂ and Ch̃ are the Riesz representations of ( f̂ ,v)c and (h̃,v)c, respectively,

i.e.,
(C f̂ ,v)VN =( f̂ ,v)c, (Ch̃,v)VN =(h̃,v)c, ∀v∈VN .

Let Lp,m
sm and Lp

s be the Riesz representations of a(ζp ,v;sm)c and a(ζp ,v; ŝ)c,
respectively, i.e.,

(Lp,m
sm ,v

)
VN =−a(ζp ,v;sm)c,

(Lp
ŝ ,v
)

VN =−a(ζp ,v; ŝ)c, ∀v∈VN ,

where 1≤ p≤N and 0≤m≤M. Assume that X p is the Riesz representation of
(ζp ,v)c, i.e.,

(X p,v)VN =−(ζp ,v)c.

Then Eq. (3.11) can be written as

∥∥ê(s)
∥∥2

VN =(C f̂ ,C f̂ )VN +2(C f̂ ,Ch̃)VN +
4(1−s)

δ2−2s

N

∑
p=1

M

∑
m=0

Θs
m(s)uN,p(s)

(C f̂ ,Lp,m
sm

)
VN

+ρ
4(1−s)

δ2−2s

N

∑
p=1

uN,p(s)
(
C f̂ ,Lp

ŝ

)
VN

+(Ch̃,Ch̃)VN +
4(1−s)

δ2−2s

N

∑
p=1

M

∑
m=0

Θs
m(s)uN,p(s)

(
Ch̃,Lp,m

sm

)
VN

+ρ
4(1−s)

δ2−2s

N

∑
p=1

uN,p(s)
(Ch̃,Lp

ŝ

)
VN

+
4(1−s)2

δ4−4s

N

∑
p=1

N

∑
p′=1

M

∑
m=0

M

∑
m′=0

Θs
m(s)uN,p(s)Θ

s
m′ (s)uN,p′ (s)

(
Lp,m

sm ,Lp′,m′
sm′

)
VN

+ρ
8(1−s)2

δ4−4s

N

∑
p=1

N

∑
p′=1

M

∑
m=0

Θs
m(s)uN,p(s)uN,p′ (s)

(
Lp,m

sm ,Lp′
ŝ

)
VN

+ρ2 4(1−s)2

δ4−4s

N

∑
p=1

N

∑
p′=1

uN,p(s)uN,p′ (s)
(
Lp

ŝ ,Lp′
ŝ

)
VN
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+ω2
N

∑
p=1

N

∑
p′=1

uN,p(s)uN,p′ (s)
(
X p,X p′)

VN . (3.12)

To efficiently compute ‖ê(s)‖VN and ∆N , we apply an offline-online proce-
dure. In the offline phase, we compute and store the quantities independent of
the uncertainties. In particular, we compute C f̂ ,Ch̃,Lp,m

sm ,Lp
ŝ and X p, and store

(C f̂ , C f̂ )VN , (C f̂ , Ch̃)VN , (C f̂ , Lp,m
sm )VN , (C f̂ , Lp

ŝ )VN , (Ch̃,Ch̃)VN , (Ch̃,Lp,m
sm )VN ,

(Ch̃, Lp
ŝ )VN , (Lp,m

sm , Lp′,m′
sm′ )VN , (Lp,m

sm ,Lp′
ŝ )VN , (Lp

ŝ , Lp′
ŝ )VN , (X p, X p′)VN ,

where 1≤p,p′≤N, 0≤m,m′≤M. In the online phase, for ∀s, we compute uN,p(1≤
p≤N), and use Eqs. (3.12) and (3.8) to compute ‖ê(s)‖VN and ∆N , respectively.

4 Sampling strategy

The choice of the RB affects the accuracy of the approximation. In this paper,
a common observation is used to construct a set of basis functions, i.e., the solu-
tion space is often attracted to a low-dimensional manifold for a particular sys-
tem. Here two sampling processes are needed. The first is to construct the affine
space of the nonlinear term and the second is to construct a RB space VNN using
the MOS-greedy algorithm. Thus, the proposed sampling method combines the
MOS for ω with the greedy procedure for s. We will briefly review the algorithms
that are used in the process.

4.1 Method of snapshots

POD has been used in many applications to construct low-rank subspaces, which
retain most of the energy presented in all original variables. One of the most im-
portant properties of POD is that an optimal approximation is constructed in the
least squares sense. Given a set of snapshots {ûN (ω1,s),ûN (ω2,s),··· ,ûN (ωNt ,s)}
⊂R

N , let the sets of the real- and imaginary-part of snapshots separately, i.e.,

XR :=
{
ℜ
(
ûN (ωj,s)

)}Nt

j=1
, X I :=

{
ℑ
(
ûN (ωj,s)

)}Nt

j=1
.

For the real snapshots

XR :=
{
ℜ
(
ûN (ωj,s)

)}Nt

j=1
=
{

XR
j

}Nt

j=1
,
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we approximate snapshot XR
j by using a set of orthogonal vectors

Ψ
R=

{
ψR

1 ,ψR
2 ,··· ,ψR

N

}
⊂R

N

with rank N<N . Then, the approximation is given by

XR
j ≈

N

∑
p=1

x
j
pψR

p , j=1,.. .,Nt.

The above approximation is also equivalent to

XR
j ≈Ψ

R(ΨR)TXR
j , j=1,.. .,Nt.

From reference [34], it can be seen that the POD basis is provided by SVD of XR,

XR=URΣR(ΥR)T ,

where UR=[UR
1 ,··· ,UR

nr
]∈R

N×nr , Υ
R=[ΥR

1 ,··· ,ΥR
nr
]∈R

Nt×nr and ΣR=diag(σR
1 ,··· ,

σR
nr
)∈R

nr×nr . The set of the first N (N≤nr) left singular vectors UR
1 ,··· ,UR

N from

UR is chosen as the POD basis Ψ
R. The error between the snapshots and the

corresponding POD solutions is as follows:

Nt

∑
j=1

∥∥XR
j −Ψ

R(ΨR)TXR
j

∥∥2

2
=

nr

∑
l=N+1

(
σR

l

)2
. (4.1)

In most cases, the snapshot matrix is overdetermined, indicating more degrees of
freedom than snapshots. Directly performing the SVD for the matrix is expensive.
To reduce costs, a technique called the method of snapshots (MOS) is often used.
Given a set of snapshots

XR :=
{
ℜ(ûN (ωj,s)

)}Nt

j=1
,

we compute the covariance matrix KR, where

KR
p,q :=

(
ℜ
(
ûN (ωp,s)

)
,ℜ
(
ûN (ωq,s)

))
c
=(X R)TXR.

By using the SVD of XR, we have

KR =
(
URΣR(Υ)R

)T(
URΣR

Υ
R
)
=Υ

R(ΣR)2(ΥR)T ⇔ KR
Υ

R =Υ
R(ΣR)2.
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Thus, the eigenvector of KR correspond to the right singular vectors of XR, and
the eigenvalue of KR correspond to the square of singular value for XR, respec-
tively. Let {λp,ep} be the normalized eigen-pairs of KR, 1≤ p ≤ Nt. Setting

(ep)j= e
j
p, the k-th MOS basis function is given by

ψp(s) :=
1√
λp

Nt

∑
j=1

e
j
pℜ
(
ûN (ωj,s)

)
=

1√
λp

Nt

∑
j=1

(ep)jX
R
j .

It is easy to get (ψp,ψl)V =δp,l, 1≤ p,l≤Nt. Then it holds that

ℜ
(
ûN (ω,s)

)
≈

Nt

∑
j=1

√
λj̺j(ω)ψj(s),

where {̺j(ω)}Nt
j=1 are given by

̺j(ω) :=
1√
λj

(
ℜ(ûN (ω,·)),ψj

)
c
.

Thus, we get the decomposition

ℜ
(

ûN (ωj,s)
)
≈

N

∑
j=1

√
λj̺j(ω)ψj(s).

The steps for constructing a MOS basis matrix are summarized in Algorithm 1.

Algorithm 1: MOS Algorithm.

Input: Snapshots {ûN (ω1,s),ûN (ω2,s),··· ,ûN (ωNt
,s)}∈R

N ,Nt≤N and

MOS dimension N.

Output: MOS basis matrix Ψ
R=[ψR

1 ,··· ,ψR
N] and Ψ

I =[ψI
1,··· ,ψI

N]∈R
N×N.

1 Take the real part and the imaginary part of the snapshots

XR :={ℜ(ûN (ωj,s)}Nt
j=1, X I :={ℑ(ûN (ωj,s)}Nt

j=1.

2 Compute covariance matrix KR=(X R)TXR, K I =(X I)TX I.

3 Calculate eigen-decomposition KR =Υ
RDR(ΥR)T, K I =Υ

I D I(Υ I)T,

where DR =diag((σR
1 )

2,··· ,(σR
nr
)2), D I =diag((σI

1)
2,··· ,(σI

nr
)2).

4 Construct the MOS basis matrix

Ψ
R=XR

Υ
R
N(D

R
N)
−1/2, Ψ

I =X I
Υ

I
N(D

I
N)
−1/2,

where Υ
R
N =Υ

R(:,1 : N),DR
N =DR(1 : N,1 : N),Υ I

N =Υ
I(:,1 : N)

and D I
N =D I(1 : N,1 : N).
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4.2 Affine forms of nonlinear terms

It is computationally inefficient to directly use the nonlinear terms obtained from
the MOS method to reduce order solution, and the computational complexity
of the nonlinear term depends on the dimension of the full order system. To
overcome the difficulty, an effective way is to approximate the nonlinear function
by projecting it onto a subspace. The subspace is spanned by a basis of dimension

Q≪N [9]. By projecting a nonlinear function ĥ : s∈P s→ ĥ(u(x,ω,s))∈R
N onto

a subspace spanned by a basis H, the approximation

ĥ
(
u(ω,s),ω,s

)
≈ h̃
(
u(ω,s),ω,s

)
=H ·c(ω,s), (4.2)

where H =[h1,··· ,hQ]∈R
N×Q. This basis function is generated by sampling the

evaluation of snapshots ĥ(ûN (ω,s)) at values si
DEIM (i= 1,.. .,NQ (NQ >Q)) and

then calculating the Q modes by the SVD of these snapshots. Here c(ω,s)∈R
Q is

the corresponding vector of coefficients that can be uniquely determined by

PTh̃
(
u(ω,s),ω,s

)
=(PT H)c(ω,s), (4.3)

where P={e℘1
,··· ,e℘Q

}∈R
N×Q and e℘i

=[0,··· ,0,1,0,··· ,0]∈R
N is the ℘i-th col-

umn of the identity matrix I∈R
N×N (i=1,.. .,Q). Suppose that PT H is nonsin-

gular. Then the coefficient vector c(ω,s) can be determined uniquely by Eq. (4.3)
and the final approximation form (4.2) becomes

h̃
(
u(ω,s),ω,s

)
=H ·c(ω,s)=H(PT H)−1HTĥ

(
u(ω,s),ω,s

)
. (4.4)

To obtain the approximation (4.4), we must specify

1. the projection basis {h1,··· ,hQ},
2. the interpolation indices {℘1,··· ,℘Q} used in P.

The construction of the basis and the selection of interpolation points are sum-
marized in Algorithm 2. In practice, the number of iterations Q typically results
in a sufficiently small error εDEIM. So we can ignore the interpolation errors be-

tween ĥ and h̃ in the subsequent process.

Remark 4.1. The DEIM is suitable for nonlinear forms with explicit expressions.

However, in this paper, the Fourier transform in time is employed. The nonlinear

terms may not have an explicit expression depending on the frequency solution

û(ω). To address this, data interpolation is necessary to map the nonlinear time-

dependent discrete data to frequency-dependent data points. Consequently, the
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Algorithm 2: DEIM Algorithm.

Input: A set of snapshots ZR :={ĥ(ℜ(ûN (ω,si)))}NQ

i=1⊂R
N ,

Z I :={ĥ(ℑ(ûN (ω,si)))}Q
i=1⊂R

N .

Output: A set of indicators ~℘R =[℘R
1 ,··· ,℘R

Q]
T, ~℘I =[℘I

1,··· ,℘I
Q]

T∈R
Q.

1 Compute a set of linearly independent basis

{hR
i ,hI

i ,1≤ i≤Q}=MOS(ZR,Z I,Q);
2 [∼,℘R

1 ]=max{|hR
1 |}, [∼,℘I

1]=max{|hI
1|};

3 HR =[hR
1 ], PR =[e℘R

1
], ~℘R =[℘R

1 ]; H I =[hI
1], P I =[e℘I

1
], ~℘I =[℘I

1];

4 for i=2 : Q do

5 Solve (PT
RHR)c

R =PT
RhR

i , (PT
I H I)c

I =PT
I hI

i for cR and cI ;

6 rR=hR
i −HRcR, r I =hI

i −H Ic
I ;

7 [∼,℘R
i ]=max{|rR|}, [∼,℘I

i ]=max{|r I|};
8 HR← [HR hR

i ], PR← [PR eR
℘R

i
], ~℘R←

[
~℘R

℘R
i

]
, H I← [H I hI

i ],

PI← [P I eI
℘I

i

], ~℘I←
[
~℘I

℘I
i

]
.

9 end

resulting discrete solution is parameter-dependent. To obtain the affine form of

Eq. (4.2), we employ the Chebyshev interpolation in Section 2.4. Since the non-

linear term does not require coercive, unlike bilinear forms, a regularization term

is unnecessary. The separation form of the nonlinear terms is as follows:

ĥ≈ h̃M :=
M

∑
m=0

Θs
m(s)ĥ

(
û(ω,sm),ω,sm

)
, Θs

m(s) := ∏
j=0
j 6=m

s−sj

sm−sj
. (4.5)

4.3 MOS-greedy algorithm

The goal of this paper is to employ the MOS-greedy algorithm to select the basis
function and perform model reduction. To initialize the MOS-greedy sampling
procedure, we define a training set Ξtrain and an initial sample s0. The cardinality
of Ξtrain is denoted by |Ξtrain|= ntrain. The algorithm depends on two suitable
integers N1 and N2. The detailed procedure is described in Algorithm 3.

As described in Section 3.2, ∆N provides a cheap posteriori error bound for
‖uN−uN‖. In the above process, we can also set the desired error tolerance ǫtol
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Algorithm 3: MOS-greedy Algorithm.

Input: A training set Ξtrain and snapshots XR,X I , s0∈Ξtrain, N1, N2.

Output: The RB approximation spaces

VNN =span{ζR
j ,ζ I

j ,1≤ j≤N}, 1≤N≤Nmax.

1 Initialize n=1,YR =∅,Y I =∅,sn= s0.

2 Compute the optimal basis functions with regard to different frequency

levels {ψR
j ,ψI

j ,1≤ j≤N1}=MOS(XR,XI,N1) by Algorithm 1.

3 Update YR←{YR ,{ψR
j ,1≤ j≤N1}}, Y I←{Y I ,{ψI

j ,1≤ j≤N1}},
N←N+N2.

4 Construct the RB approximation spaces via MOS algorithm again, i.e.,

{ζR
j ,ζ I

j ,1≤ j≤N}=MOS(YR,Y I,N).

5 Update Ξtrain with Ξtrain←Ξtrain=Ξtrain\sn, for each s∈Ξtrain, evaluate

the error ∆N by (3.8).

6 Choose sn+1=argmin
s∈Ξtrain

∆N , and set ern= max
s∈Ξtrain

∆N .

7 n←n+1.

8 Return to Step 2 if ern≤ ern−1, otherwise terminate.

and stop the procedure when ∆N≤ ǫtol. The selection of N1 satisfies the internal
MOS error criterion, which is based on the sum of the usual eigenvalues and ǫtol.
The choice of N2 ≤ N1 is to minimize repetition in the RB space. It should be
noted that the MOS-greedy algorithm easily selects duplicate sn in continuous
greedy cycles. Therefore, in the MOS-greedy algorithm, we delete the parameters
that have already been selected. In this paper, MOS operates on one (frequency)
dimension, and the greedy explores other (parameter) dimensions. Therefore,
for large parameter domains and a wide range of parameter training samples,
this process is still computationally feasible. Compared to the standard MOS
algorithm, which requires computing FEM solutions for all training samples, the
MOS-greedy algorithm computes significantly fewer FEM snapshots due to the
greedy iteration, enabling rapid and uniform convergence across the parameter
domain.

During the MOS-greedy sampling procedure, the best approximation h̃ of ĥ is
employed to minimize errors from the discrete empirical interpolation. In order
to clearly illustrate the proposed method, the algorithm is summarized in the
flowchart shown in Fig. 2.
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Offline

Generate a full

order model

Offline
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full order matrices

Mω,M,Asm ,Aŝ, f R and f I

Offline

Construct the basis functions

{ζR
p }N

p=1 and {ζ I
p}N

p=1

Offline

Compute and store the

s-independent reduced order matrices

MωR
N ,Mω I

N ,Mω
1 ,Mω

2 ,AR
N,AI

N,As
R
N,As

I
N,A1,

A2,As1, As2,BR
N,BI

N,B1,B2, f R
N, f I

N, f 1 and f 2

Online

Establish a ROM

Online

For any new

parameter s

Online

Solve the reduced

order solutions uR
N and uI

N

Algorithm 3

Figure 2: Flowchart of MOS-greedy method.

5 Numerical results

We demonstrate the effectiveness of the proposed MOS-greedy algorithm through
two numerical examples for solving nonlocal diffusion models. In Section 5.1, we
address a nonhomogeneous nonlocal heat equation with random inputs. In Sec-
tion 5.2, we solve a parameterized nonlocal reaction-diffusion equation. Here,
we only considered the error caused by the RB approximation. The error of the
finite element discretization and Fourier transform is not considered, where more
details can be found in [5, 31].

For the computational domain in this paper, spatial domain Ω = (0,1). The
other model parameters used are set as

δ=1/8, ∆x=1/128, ∆t=0.001, T=1, M=32, nt = |Ξtrain|=20.

Let ûN be the solutions of the proposed MOS-greedy algorithm, and ûN be the
reference (full order) solutions, which are solved by FEM. Then the relative mean
error in the weighted L2 norm is defined as

error=
1

N

N

∑
i=1

‖ûN(x,ω;si)− ûN (x,ω;si)‖2

‖ûN (x,ω;si)‖2
, (5.1)

where N is the number of samples.
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5.1 Nonhomogeneous nonlocal heat equation with random

inputs

In this numerical example, we consider a nonhomogeneous nonlocal heat Eq. (2.1)
with h=0. Here P s =[1/3,157/300] and the true analysis solution

u(x,t,s)=
(

s(x2−x4)+s2(x3−x5)
)

exp(−t2).

Using the Fourier transform for u(x,t,s),

û(x,ω,s)=
√

π
(
s(x2−x4)+s2(x3−x5)

)
exp

(
−ω2

4

)
.

Then the right hand-side can be derived as

f̂ (x,ω,s)=−i
√

πω
(
s(x2−x4)+s2(x3−x5)

)
exp

(
−ω2

4

)

+
√

π

(
20x3+12x2−6x−2+(5x+1)

2s−2

s−2
δ2

)
exp

(
−ω2

4

)
.

In addition, we have a homogeneous initial condition, and the volume constraint
is given by

ĝ(x,ω,s)= û(x,ω,s), x∈ [−δ,0]∪[1,1+δ].

In this example, ω∗ = 4.87, Nω = 6, N1 = 5 and N2 = 4. 1000 samples are used in
Algorithm 3 to construct the RB approximation spaces. To assess the accuracy of
the reduced order solution, we compare the mean of the reference solution and
the reduced order solution (with 6 basis functions) across 1000 samples, as shown
in Fig. 3 (left). It shows the reduced order solution is a good approximation of the
reference solution. Fig. 3 (right) further illustrates the reduced order solution for
varying parameters, revealing a nontrivial parameter dependency.

We randomly choose 1000 samples and compute the average relative errors
defined as Eq. (5.1). The average relative error against the number of the basis
functions is shown in Fig. 4 (left). Additionally, Fig. 4 (right) plots the average
relative errors versus different time levels for N=2,4,10. By Fig. 4 (left), we find
that the average relative error decreases when the number of the basis functions
N increases. To further demonstrate the effectiveness of the proposed method,
we plot the means and variances of the reference and reduced order solution
in Fig. 5. To construct the ROM, the number of basis functions is N = 6. From
this figure, we find that the mean and variance profiles for the reference and
reduced order solutions are almost identical. This shows that the proposed MOS-
greedy method can provide a good approximation for the nonlocal problems with
random inputs.
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Figure 3: The mean of the reference and reduced order solution with N = 6 (left) and reduced order
solutions with different parameters (right).
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Figure 4: The average relative error against the number of the basis functions (left) and the average
relative error versus different time levels for N=2,4,10.

5.2 Nonlocal reaction-diffusion equation with nonlinear terms

In this numerical example, we consider the nonlocal reaction-diffusion model
(2.1) with h(u,t,s)=u−u3 . For this example, P s=[1/3,1/2] and the exact solution

u(x,t,s)= ssin

(
2π

(
x+

3

2

))
texp(−t2).

After the Fourier transform,

û(x,ω,s)=−i

√
π

2
ssin

(
2π

(
x+

3

2

))
ωexp

(
−ω2

4

)
.

We set ω∗=1.23, Nω =5, N1=5, N2=3 and choose 1000 samples.
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Figure 5: The mean and variance of the reference and reduced order solution with N=6. The first row
is the mean profiles and the second row is the variance profiles.

Here the nonlinear term does the Fourier transform with respect to time and
lacks an explicit representation in terms of û(ω). Consequently, data interpola-
tion is required to map the time-dependent nonlinear discrete data to frequency-
dependent data points. This results in a parameter-dependent discrete solution.
In this case, the nonlinear term is treated similarly with bilinear to obtain the
affine form (4.5).

For this example, we present the results as shown in Figs. 6-8. Fig. 6 (left)
shows the mean of the reference and reduced order solutions, computed using 6
basis functions for the nonlinear diffusion problem across 1000 samples. Fig. 6
(right) displays the reduced order solutions of (3.4) for varying parameters s,
demonstrating the method’s ability to provide efficient and accurate approxima-
tions for nonlocal problems with nonlinear terms.

To visualize the relative errors against the number of basis functions, we plot
the average relative error corresponding to the different numbers of the basis
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Figure 6: The mean of the reference and reduced order solution with N = 6 (left) and reduced order
solutions with different parameters (right).

1 2 3 4 5 6 7 8 9 10 11 12 13

Number of the basis functions

10-10

10-8

10-6

10-4

10-2

R
el

at
iv

e 
er

ro
r

0 0.2 0.4 0.6 0.8 1

Time

10-5

10-4

10-3

10-2

10-1

100

R
el

at
iv

e 
er

ro
r

2 basis functions
4 basis functions
6 basis functions

Figure 7: The average relative error corresponding to the different numbers of the basis functions (left)
and the average relative error versus different time levels with N=2,4,6.

functions in Fig. 7 (left). The results demonstrate that the relative error decreases
as the number of basis functions increases. While the rate of reduction slows
slightly after 3 basis functions, the relative error continues to decline as the num-
ber of basis functions increases up to 11. To further demonstrate the relation-
ship between relative error and time, we show the reduced order solutions with
N = 2,4,6 in Fig. 7 (right). The relative error decreases against the time and the
number of basis functions.

Finally, Fig. 8 compares the means and variances of the reference and reduced
order solutions. The nearly identical profiles for both mean and variance con-
firm that the nonlinear ROMs provide an excellent approximation to the reference
models, validating the effectiveness of the proposed method.

To highlight the advantages of the proposed methods, Table 1 lists the average
online CPU time and average relative error of the FEM and MOS-greedy method
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Figure 8: The mean and variance of the reference and reduced order solution with N=6. The first row
is the mean profiles, and the second row is the variance profiles.

against the time. From the perspective of relative error, the proposed reduced
model can provide good approximates of the full order model. Additionally, the
MOS-greedy algorithm significantly improves computational efficiency. Com-
pared to FEM, the proposed method performs well for both linear and nonlinear

Table 1: The average online CPU time and the average relative error by using FEM and MOS-greedy
algorithm with N=6.

Strategies t=0.5 t=0.75 t=1

CPU time

FEM (Section 5.1) 1.261e+02s 1.461e+02s 1.521e+02s

MOS-Greedy (Section 5.1) 2.081e-02s 4.381e-02s 5.561e-02s

FEM (Section 5.2) 1.481e+02s 1.921e+02s 2.291e+02s

MOS-Greedy(Section 5.2) 2.561e-02s 5.511e-02s 7.351e-02s

Relative error
MOS-Greedy (Section 5.1) 6.05e-04 6.00e-04 6.67e-04

MOS-Greedy(Section 5.2) 9.67e-05 6.30e-05 4.51e-05
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nonlocal models as time progresses, demonstrating its efficiency and effective-
ness for solving nonlocal problems.

6 Conclusions

In this paper, we have proposed the method of snapshots and greedy (MOS-
greedy) algorithm based on the frequency-domain for parameterized time-de-
pendent nonlocal diffusion models. Since solving the full order model directly
for each input parameter is expensive, we apply the Fourier transform and MOS-
greedy algorithm to construct a ROM. The MOS-greedy algorithm is used to se-
lect the basis functions. For time-dependent nonlocal equations, the temporal
term has a greater impact on the model reduction. The Fourier transform is em-
ployed to address this issue. It converts the time-dependent parabolic equation
into a frequency-dependent elliptic equation. This can eliminate the influence of
time and achieve the goal of model reduction, which improves computational ef-
ficiency. Then an offline-online computational decomposition is achieved in the
MOS-greedy algorithm. This is very desirable for predicting the outputs of mod-
els for various stochastic influences.

In future work, we will continue to explore ROMs for nonlocal problems, such
as the high-dimensional complex nonlocal equations, and compare the advan-
tages and disadvantages of different methods for nonlocal equations.
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