Hamilton-Jacobi Equations for Nonholonomic Magnetic Hamiltonian Systems
DOI:
https://doi.org/10.4208/cmr.2022-0028Keywords:
Hamilton-Jacobi equation, magnetic Hamiltonian system, nonholonomic constraint, distributional magnetic Hamiltonian system, nonholonomic reduction.Abstract
In order to describe the impact of the different geometric structures and the constraints for the dynamics of a Hamiltonian system, in this paper, for a magnetic Hamiltonian system defined by a magnetic symplectic form, we drive precisely the geometric constraint conditions of the magnetic symplectic form for the magnetic Hamiltonian vector field, which are called the Type I and Type II Hamilton-Jacobi equations. Second, for the magnetic Hamiltonian system with a nonholonomic constraint, we can define a distributional magnetic Hamiltonian system, then derive its two types of Hamilton-Jacobi equations. Moreover, we generalize the above results to nonholonomic reducible magnetic Hamiltonian system with symmetry, we define a nonholonomic reduced distributional magnetic Hamiltonian system, and prove the two types of Hamilton-Jacobi theorems. These research reveal the deeply internal relationships of the magnetic symplectic structure, the nonholonomic constraint, the distributional two-form, and the dynamical vector field of the nonholonomic magnetic Hamiltonian system.