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Abstract. The linear stabilization approach is well-known for facilitating the use of
large time steps in solving gradient flows while maintaining stability. However, the
up-to-date analysis of energy stability relies on either a global Lipschitz nonlinearity
or an ℓ∞ bound assumption of numerical solutions. Considering the Swift-Hohenberg
equation that lacks a global Lipschitz nonlinearity, we develop a unified framework to
analyze the energy stability and characterize the stabilization size for a class of single-
step schemes employing spatial Fourier pseudo-spectral discretization. First, assum-
ing that all stage solutions are bounded in the ℓ∞ norm, we illustrate that the energy ob-
tained from a single-step scheme with non-negative energy-stability-preserving coeffi-
cient is unconditionally dissipative, as long as a sufficiently large stabilization param-
eter is employed. To justify the ℓ∞ bound assumption of solutions, we use the third-
order exponential-time-differencing Runge-Kutta scheme as a case study to establish
a uniform-in-time discrete H2 bound for stage solutions under an O(1) time step con-
straint. This leads to a uniform ℓ∞ bound of stage solutions through discrete Sobolev
embedding. Consequently, we achieve a stabilization parameter of O(1), which is in-
dependent of the time step, thereby ensuring the energy stability. The global-in-time
energy stability analysis and characterization of the stabilization parameter represent
significant advancements for general single-step schemes applied to a gradient flow
without the global Lipschitz continuity.
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1 Introduction

In this paper, we consider the Swift-Hohenberg (SH) equation in the form

{

ut=−(1+∆)2u−u3+εu, x∈Ω, t∈ (0,T],

u(x,0)=u0(x), x∈ Ω̄
(1.1)

with periodic boundary conditions on Ω=∏
d
k=1(ak,bk),d=2 or 3. Here, u :Ω̄×[0,T]→R is

a periodic density field; T>0 is the final time; and ε>0 is a constant related to the temper-
ature. The SH model was originally proposed by Swift and Hohenberg [48] to study the
thermal convection of the Rayleigh-Bénard instability at large Prandtl numbers under the
Boussinesq approximation. Beyond fluid convection, the SH equation has been pivotal in
various pattern formation scenarios in fields such as biology, sociology, crystallography,
and others [11,31,44]. Studies on stable patterns and bifurcations for the SH equation can
be found in, for example, [42, 50].

The SH equation arises as the L2 gradient flow (ut=−δE(u)/δu) of the Swift-Hohen-
berg-type Lyapunov free energy functional [48],

E(u)=
∫

Ω

(
1

2
u(1+∆)2u+

1

4
u4− ε

2
u2

)

dx. (1.2)

It ensures the non-increasing of energy over time, but mass is not conserved. Conversely,
employing the H−1 gradient flow (ut = ∆δE(u)/δu) yields the six-order-in-space phase
field crystal (PFC) equation [17], where energy decreases, and mass is conserved. More
details could be found in [16]. Because of the broad applications of the SH equation in
various research areas and its features such as fourth-order spatial derivative, nonlinear-
ity, and large time scale, we aim to create accurate, efficient, and energy-stable (thermo-
dynamically consistent [22]) numerical schemes. These schemes will facilitate the explo-
ration of diverse stable equilibrium solutions [41] of the SH equation. However, it should
be noted that our results are also applicable to the PFC equation.

So far, various energy stable integrators have been developed for SH and PFC-type
equations, including nonlinear convex splitting schemes [46, 51, 55], linear convex split-
ting (stabilization) methods [21, 65], Douglas-Dupont-type regularization [6, 43], stabi-
lizing correction [8, 9], implicit schemes [12, 23, 38, 39, 57, 66], invariant energy quadrant
method [40], and scalar auxiliary variable algorithms [58, 67], among others. The linear
convex splitting technique [7, 26, 56, 59–62] is notable for effectively integrating nonlin-
ear terms while ensuring stability, attracting attention across various research areas. In
particular, the implicit-explicit (IMEX) Euler, exponential time differencing multi-step,
and exponential-time-differencing Runge-Kutta (ETDRK) schemes [14, 15, 27, 29] are ex-
tensively utilized in solving gradient flow problems [5,13,32,45,64]. However, achieving
energy stability typically necessitates a global Lipschitz assumption on the nonlinear-
ity [20], an a priori ℓ∞ bound on numerical solutions [26, 65], or a restriction on the time


