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Abstract. We establish a sharp uniform-in-time error estimate for the stochastic gra-
dient Langevin dynamics (SGLD), which is a widely-used sampling algorithm. Under
mild assumptions, we obtain a uniform-in-time O(?) bound for the Kullback-Leibler
divergence between the SGLD iteration and the Langevin diffusion, where 7 is the step
size (or learning rate). Our analysis is also valid for varying step sizes. Consequently,
we are able to derive an O(7) bound for the distance between the invariant measures
of the SGLD iteration and the Langevin diffusion, in terms of Wasserstein or total vari-
ation distances. Our result can be viewed as a significant improvement compared with
existing analysis for SGLD in related literature.
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1 Introduction

The stochastic gradient Langevin dynamics, first proposed by Welling and Teh [54] in
2011, has drawn great attention of researchers from various areas, and it shows outstand-
ing performance when dealing with sampling tasks [1, 35,43]. As an online algorithm,
SGLD incorporates independent white noise into the well-known stochastic gradient de-
scent (SGD), making it effective for sampling tasks. Equivalently, the SGLD algorithm
can be also viewed as adding a random batch to the drift term of the Euler-Maruyama
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scheme for the (overdamped) Langevin diffusion, which is a time-continuous stochastic
process that can converge to a target distribution 7t under suitable assumptions. In this
paper, we give an optimal estimate for time-discretization error (the distance between
SGLD and the Langevin diffusion), and a sharp bound for the sampling error (distance
between SGLD and the target distribution 77 in the sampling task) in terms of Wasser-
stein or total variation distance as a corollary. In detail, letting # be the constant time step
(or learning rate), we prove that under mild assumptions, the time-discretization error
in terms of Kullback-Leibler (KL) divergence is O(#?), which is sharp and enhances the
results of most existing analyses [7, 16,39, 46, 56, 58]. The result is also valid for vary-
ing step sizes. Moreover, the techniques involved in our analysis can effectively address
challenges from the random batch and time discretization (see a more detailed discus-
sion below and in Section 3). These techniques have the potential for further applications
to analyze other stochastic processes and algorithms, for instance, a follow-up work for
the sharp error estimate of the random batch method (RBM) for large interacting particle
system [23].

Let us first explain the details of the SGLD method. Suppose we aim to generate
samples from the target distribution 7 xe P4, where U:RY — R is the free energy and
B >0 is the inverse temperature. One well-known and effective way to sample from 7
is using overdamped Langevin diffusion, whose invariant measure is exactly 7. It is
described by the following stochastic differential equation (SDE) in It6’s sense:

dX =—VU(X)dt+ /2B 1dW, X|—o=Xo, (1.1)

where W is the Brownian motion in R?. The practical sampling method is then to solve
the SDE above via suitable numerical schemes. After running the numerical simulation
for relatively long time, one treats the obtained numerical solution for (1.1) as an approx-
imation for 7t. Consider the classical Euler-Maruyama scheme for (1.1). Given the time
step (or learning rate) 7y at k-th iteration, and denoting Tj ::Zif;& 1, the Euler-Maruyama
scheme for (1.1), which is also called the unadjusted Langevin algorithm (ULA), iterates
as follows:

XTIH—] :XTk_UkVU(XTkH' zﬁil(WTkH_WTk)' (1.2)

Based on ULA (1.2), the key idea of SGLD is to reduce the computation cost by using
the random batch when calculate the drift term —VU. In various practical tasks such
as the Bayesian inference [54], people deal with the potential U(-) coming from high
dimensional large-scaled data with size N, which is usually a large number. In these
applications, U(-) is often of the form

U () =Eg[US(-)], (1.3)

which is the expected value of a function depending on some random variable ¢ € S.
Motivated by the “random mini-batch” idea from the stochastic gradient descent algo-
rithm proposed by Robbins and Monre [47] decades ago, the SGLD algorithm replaces
the drift VU(-) =E;[VU¢(-)] by a random drift VU¢(-), which is an unbiased estimate



