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Abstract. We present partial evolutionary tensor neural networks (pETNNSs), a no-
vel approach for solving time-dependent partial differential equations with high ac-
curacy and capable of handling high-dimensional problems. Our architecture incor-
porates tensor neural networks and evolutionary parametric approximation. A poste-
riori error bound is proposed to support the extrapolation capabilities. In numerical
implementations, we adopt a partial update strategy to achieve a significant reduc-
tion in computational cost while maintaining precision and robustness. Notably, as
a low-rank approximation method of complex dynamical systems, pETNNs enhance
the accuracy of evolutionary deep neural networks and empower computational abil-
ities to address high-dimensional problems. Numerical experiments demonstrate the
superior performance of the pETNNSs in solving complex time-dependent equations,
including the incompressible Navier-Stokes equations, high-dimensional heat equa-
tions, high-dimensional transport equations, and dispersive equations of higher-order
derivatives.
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1 Introduction

Partial differential equations (PDEs) are ubiquitous in modeling phenomena across sci-
entific and engineering disciplines. They serve as indispensable tools in modeling con-
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tinuum mechanics, electromagnetic theory, quantum mechanics, and a myriad of other
fields where the evolution of systems across space and time is of interest. Traditional
numerical approaches for solving PDEs, such as finite difference [31], finite element [8],
and spectral methods [41], have been widely used. However, the computational bur-
den imposed by these methods grows exponentially with increasing dimensionality of
the problem, often rendering them impractical for high-dimensional systems. This phe-
nomenon, known as the “curse of dimensionality”, has been a persistent impediment to
progress in various scientific domains.

The emergence of machine learning has introduced a novel set of tools to the scientific
community, offering a potential panacea to the curse of dimensionality. Deep learning,
a class of machine learning characterized by deep neural networks (DNNs), has been par-
ticularly successful in areas where traditional algorithms falter due to the complexity and
volume of the data involved, such as [10,17,25,30,35,54]. The universal approximation
theorem underpins this capability, suggesting that a neural network can approximate any
continuous function to the desired degree of precision [9,22]. Leveraging this, researchers
have proposed various frameworks in which DNNs are trained to satisfy the differential
operators, initial conditions, and boundary conditions of PDEs.

A notable advancement in the field is the emergence of deep Galerkin method [43],
deep Ritz method [12], and physics-informed neural networks (PINNs) [39]. They embed
the governing physical laws, encapsulated by PDEs, into the architecture of deep learning
models. By incorporating the PDEs directly into the loss function, PINNs ensure that the
learned solutions are not only data-driven but also conform to the underlying physical
principles. This integration of physical laws into the learning process imbues PINNs with
the ability to generalize beyond the data they were trained on, making them particularly
adept at handling scenarios where data is scarce or expensive to acquire.

However, the efficacy of PINNs is predominantly limited to the temporal domain
for which they have been trained, typically within the interval [0,T]. Their ability to
extrapolate beyond this training window is limited, which is a manifestation of neural
networks’ inherent weakness in out-of-distribution generalization. This limitation hin-
ders their predictive capacity, making them less effective in forecasting future states of
the system under study.

The evolutionary deep neural networks (EDNNs) [11], which can address this chal-
lenge, have been developed as an innovative approach to solving time-dependent PDEs.
The EDNNs are designed to evolve in tandem with the temporal dynamics they model,
thus possessing an enhanced capability for prediction. This is achieved by structuring
the neural network in a way that intrinsically accounts for the temporal evolution, al-
lowing for a more robust extrapolation into future times. The methodology derived by
the EDNN s has attracted significant attention. Hao et al. [19] proposed a neural energy
descent method, which identifies steady-state solutions of evolutionary equations to op-
timize neural networks. The work [15] formulated the deep neural network parameters
as an optimal control problem to approximate solution operators of evolutionary PDEs.
The authors in [5] employed this to build upon the foundational results established in [1].



