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Abstract. Since the memory effect is taken into account, the singularly perturbed sub-
diffusion equation can better describe the diffusion phenomenon with small diffusion
coefficients. However, near the boundary configured with non-smooth boundary val-
ues, the solution of the singularly perturbed subdiffusion equation has a boundary
layer of thickness O(ε), which brings great challenges to the construction of the effi-
cient numerical schemes. By decomposing the Caputo fractional derivative, the singu-
larly perturbed subdiffusion equation is formally transformed into a class of steady-
state diffusive-reaction equation. By means of a kind of tailored finite point method
(TFPM) scheme for solving steady-state diffusion-reaction equations and the L1 for-
mula for discretizing the Caputo fractional derivative, we construct a new L1-TFPM
scheme for solving singularly perturbed subdiffusion equations. Our proposed nu-
merical scheme satisfies the discrete extremum principle and is unconditionally nu-
merically stable. Besides, we prove that the new TFPM scheme can obtain reliable
numerical solutions as h≪ ε and ε≪ h. However, there will be a large error loss due
to the resonance effect as h∼ ε. Numerical experimental results can demonstrate the
validity of the numerical scheme.
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Key words: Singularly perturbed subdiffusion equations, semi-discrete TFPM scheme, L1-TFPM
scheme, discrete extremum principle.

1 Introduction

Since the 19th century, the fractional derivatives are gradually used for modifying tra-
ditional physical models. Nigmatullin [16] uses the fractional Fick law to replace the
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classical Fick’s law and then obtain the subdiffusion equation. The subdiffusion equa-
tion obtained from the modeling takes the memory effect into account, thus can model
the universal electromagnetic, acoustic and mechanical responses more accurately. In
recent decades, many scholars have devoted themselves to the theoretical analysis and
numerical solution of the subdiffusion equation [2, 8, 10, 13, 14, 17, 20, 23, 24].

In this paper, we study the numerical approximation for the one-dimensional singu-
larly perturbed subdiffusion equation on a bounded domain. We consider the following
initial-boundary value problem on ΩT

B =[−1,1]×(0,T]:










C
0 Dα

t u(x,t)−ε2∂x

(

a(x)∂x

)

u(x,t)= f (x,t), (x,t)∈ΩT
B ,

u(−1,t)=φ(t), u(1,t)=ψ(t), 0≤ t≤T,

u(x,0)=w(x), x∈ [−1,1],

(1.1)

where 0<ε≪1 is a small parameter and the diffusion coefficient a(x)∈C1
∞([−1,1]) satisfies

the uniform ellipticity condition, that is, there are two constants 0<a1<a2<+∞ such that

ā1 ≤ a(x)≤ ā2, ∀x∈ [−1,1]. (1.2)

Here, the Caputo fractional derivative C
0 Dα

t w(t) of order α ∈ (0,1) in time direction is
defined as follow:

C
0 Dα

t w(t)=
1

Γ(1−α)

∫ t

0
(t−s)−αw′(s)ds,

where Γ(z) is the Gamma function. Besides, we assume the initial value condition w(x)∈
C2

∞([−1,1]) and the initial boundary value condition satisfies the following compatibility
conditions:

φ(0)=w(−1), ψ(0)=w(1). (1.3)

We also assume that the source term f (x,t)∈C2
∞([−1,1],L∞((0,T])). The existence and

uniqueness of the solution for the initial-boundary value problem (1.1) can refer to the
work in [11].

According to the work in [12], near the boundary configured with non-smooth bound-
ary values, the solution u(x,t) of the initial-boundary value problem (1.1) has a boundary
layer of thickness O(ε). Besides, the singularity is mainly concentrated in the boundary
layers, and the solution u(x,t) changes gently outside the boundary layers. The fine struc-
ture associated with the small parameters ε contained in the boundary layers brings great
challenges to the construction of an effective numerical scheme. Scholars have paid at-
tention to the numerical solution of the singularly perturbed subdiffusion equation with
low diffusion coefficient [3, 9, 18, 21, 22].

The tailored finite point method adaptively selects the local interpolation function ac-
cording to the characteristics of the problem to be solved. In this way, the fine structure of
the solution related to the small parameter ε can be captured on a relatively coarse grid.
The tailored finite point method has been successfully used for the numerical solution
of many singularly perturbed problems, please refer to the literature [6]. In [22], a tai-
lored finite point scheme is introduced to solve the singularly perturbed time-fractional
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convective diffusion equation with constant diffusion coefficient. In [12], the singularly
perturbed subdiffusion equation is transformed into a singularly perturbed diffusive-
reaction equation by discretization of the Caputo fractional derivatives. Then the sin-
gularly perturbed diffusive-reaction equation is discretized by a class of TFPM scheme.
The L1-TFPM scheme proposed in [12] can degenerate to the scheme in [22] when the
diffusion coefficient is constant.

In fact, the L1-TFPM scheme proposed in [12] is unconditionally stable, but not un-
conditionally consistent. For example, if we select h=Cετα/2, as h,τ→0+, the difference
equation discretized by this scheme will approximate the following partial differential
equation:

C
0 Dα

t u(x,t)−ε2λ(x)∂x

(

λ(x)a(x)∂x

)

u(x,t)= f (x,t)

with the coefficient λ(x) defined by

λ(x)=
C

√

a(x)Γ(2−α)
[

e
C

2
√

Γ(2−α)a(x)−e
− C

2
√

Γ(2−α)a(x)

]

6=1.

Therefore, as h∼ετα/2, this scheme may not be able to obtain a reliable numerical solution
for the singularly perturbed subdiffusion equation (1.1). We will construct a new class of
L1-TFPM scheme to overcome this deficiency.

By decomposing the Caputo fractional derivative, the singularly perturbed subdiffu-
sion equation can be formally transformed into a family of steady-state diffusion-reaction
equations with respect to the spatial variable x. By constructing a TFPM scheme for
solving the steady-state diffusion-reaction equation, we can obtain a semi-discrete TFPM
scheme for solving the singularly perturbed subdiffusion equation. The extremum prin-
ciple is an important characteristic satisfied by the subdiffusion equation, which can en-
sure the stability of the solution. We can show that our proposed semi-discrete TFPM
scheme satisfies the semi-discrete extremum principle. Furthermore, the semi-discrete
scheme is unconditional stability and unconditionally consistent. It can be proved that
when ε≪ h, the newly proposed semi-discrete TFPM scheme can still obtain high preci-
sion numerical solutions.

The solutions of ordinary differential equations discretized by the semi-discrete TFPM
scheme cannot be given analytically. Since the solution u(x,t) of the subdiffusion equa-
tion will have a weak singularity at the initial time [19], and we use the L1 formula on
the graded grids {tk =T(k/M)γ} to approximate the Caputo fractional derivative in the
ordinary differential equations obtained by discretization above. Thus, we can obtain
a new L1-TFPM scheme for solving the singularly perturbed subdiffusion equation. The
newly proposed L1-TFPM scheme is unconditionally stable and unconditionally con-
sistent. The results of numerical experiments show that the newly proposed L1-TFPM
scheme can effectively solve the singularly perturbed subdiffusion equation as ε ≪ h
and h ≪ ε. However, as h ∼ ε, the resonance effect results in a large loss of numerical
accuracy.



4 W. Kong and Z.Y. Huang / CSIAM Trans. Appl. Math., 6 (2025), pp. 1-30

This article is organized as follows. In Section 2, we propose a new L1-TFPM scheme
to numerically solve the singularly perturbed subdiffusion equation. In Section 3, we
give some numerical experiments to show that the newly proposed L1-TFPM scheme
are valid. In Section 4, a brief summary is given.

2 The semi-discrete TFPM scheme and the L1-TFPM scheme

In this section, we investigate the numerical solution of the singularly perturbed subdif-
fusion equation. We denote that the number of grids per unit length in spatial direction
is N with a space step h= 1/N and xj = jh−1, and the number of grids per unit length
in time direction is M with a time step of τ= 1/M and tn = nτ. Besides, we denote that
Uj(t) is a semi-discrete approximate value of u(xj,t) and ΩT

h is the semi-dispersion of the

domain ΩT
B,

ΩT
h ={(xj,t) | −1≤ xj ≤1, 0< t≤T}.

In addition, we denote that Un
j is an approximate value of u(xj,t

n) and ΩT
h,τ is the grid

division of the domain ΩT
B,

ΩT
h,τ =

{(

xj,t
n
)

| −1≤ xj ≤1, 0≤ tn ≤T
}

.

2.1 The asymptotic analysis for the singularly perturbed subdiffusion
equations

From the asymptotic analysis results proposed in [12], we know that the singularity of
the solution u(x,t) for the initial-boundary value problem (1.1) is concentrated in the
space direction. Therefore, our research focuses on the numerical discretization of the
spatial direction. Next, we briefly review the asymptotic analysis results of the singularly
perturbed subdiffusion equation.

For convenience, we mark as follow:

u(o)(x,t)=w(x)+
1

Γ(α)

∫ t

0
(t−s)α−1 f (x,s)ds. (2.1)

If the boundary value on the boundary is consistent with u(o), the boundary value is said
to be smooth, otherwise it becomes a non-smooth boundary value. Through the asymp-
totic analysis results showed in [12], in general, we can find that the solution of (1.1) has
rapidly changing boundary layers near the boundaries Γ±={±1}×[0,T] configured with
non-smooth boundary values.

Proposition 2.1 ([12]). If a non-smooth boundary value is configured at the boundaries Γ±=
±1×[0,T], the solution u(x,t) of the initial boundary value problem (1.1) can be decomposed as
follows:

u(x,t)=u(o)(x,t)+ θ̄

(

x+1

ε
,t

)

+ η̄

(

1−x

ε
,t

)

+R(x,t). (2.2)
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Among them, the first item of decomposition is defined as in (2.1). However, the second and third
terms of the decomposition satisfy the following estimates:

∣

∣

∣

∣

θ̄

(

1+x

ε
,t

)
∣

∣

∣

∣

≤C(α)γ(t)exp







−Ē(α)

[

(1+x)2

ε2tα

]

1
2−α







, (2.3)

∣

∣

∣

∣

η̄

(

1−x

ε
,t

)
∣

∣

∣

∣

≤C(α)γ(t)exp







−Ē(α)

[

(1−x)2

ε2tα

]

1
2−α







, (2.4)

where C(α) and Ē(α) are positive constants independent of x and t, and the function γ(t) is
defined by

γ(t)= t
α

4−3α +εt
36−12α−α2

12−6α .

Furthermore, the fourth term of the decomposition R(x,t)=O(ε2) as ε→0+.

Through asymptotic analysis, we can decompose the solution of the singularly per-
turbed subdiffusion equation (1.1) into three parts: the smooth part u(0), the singular part
θ̄+η̄ and the relatively small residual term R. The singular part θ̄+η̄ shows that there are
boundary layers of thickness O(ε) near the boundary Γ± configured with non-smooth
boundary values. As ε≪1, the drastic changes of large gradients in the boundary layers
will bring great challenges to the construction of efficient numerical methods. In addi-
tion, for the asymptotic property of ∂k

xu(x,t),k=1,2, we need the following proposition:

Proposition 2.2 ([12]). For the initial boundary value problem (1.1), if the k=1,2 order deriva-
tive ∂k

xu(x,t) of its solution with respect to x exists and is continuous, we have the following
estimates as ε→0+ :

∣

∣∂k
xu(x,t)

∣

∣≤C(T,α)






1+ε−2ke

−Ē(α)

[

(1+x)2

ε2tα

]
1

2−α

+ε−2ke
−Ē(α)

[

(1−x)2

ε2tα

]
1

2−α

+ε2






, (2.5)

where the constants C(T,α), Ē(α) are independent of x, t and ε.

Remark 2.1. By the mathematical induction, we can generalize the result of the Propo-

sition 2.2 to the spatial partial derivatives of any order ∂
(k)
x u(x,t),k = 1,2,3,.. ., that is,

as ε→0+,

∣

∣∂k
xu(x,t)

∣

∣≤C(T,α)






1+ε−2ke

−Ē(α)

[

(1+x)2

ε2tα

]
1

2−α

+ε−2ke
−Ē(α)

[

(1−x)2

ε2tα

]
1

2−α

+ε2






, (2.6)

where the constants C(T,α), Ē(α) are independent of x, t and ε.
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2.2 The semi-discrete TFPM scheme

Using the idea of the line method, we firstly discretize the partial derivative of the spatial
variable x in the singularly perturbed subdiffusion equation.

First, we decompose the Caputo fractional derivative C
0 Dα

t u(x,t) in the singularly per-
turbed subdiffusion equation into two parts

C
0 Dα

t u(x,t)=
1

Γ(1−α)

∫ t

0
(t−s)−α∂su(x,s)ds

=
1

Γ(1−α)

∫ t

0
t−α∂su(x,s)ds+

1

Γ(1−α)

∫ t

0
[(t−s)−α−t−α]∂su(x,s)ds.

For the first term of this decomposition, we have

∫ t

0
t−α∂su(x,s)ds= t−α [u(x,t)−u(x,0)]= t−αu(x,t)−t−αw(x), t>0.

If we denote

f̄ (x,t)= f (x,t)+
1

Γ(1−α)tα
w(x)− 1

Γ(1−α)

∫ t

0
[(t−s)−α−t−α]∂su(x,s)ds,

the singularly perturbed subdiffusion equation can be rewritten as

−ε2∂x

(

a(x)∂x

)

u(x,t)+
1

tαΓ(1−α)
u(x,t)= f̄ (x,t), (x,t)∈ (−1,1)×(0,T]. (2.7)

Next, we will use the idea of the tailored finite point method showed in [6] to con-
struct a semi-discrete numerical scheme for solving Eq. (2.7). Without loss of generality,
we consider a tailored finite point scheme to solve the following differential equation on
the grid {xj |xj = jh−1}:

−ε̄2
(

a(x)v′(x)
)′
+v(x)= g(x) (2.8)

with the small parameter ε̄ defined by

ε̄= ε̄(t,α,ε)=
√

Γ(1−α)tα ε.

At grid point xj, we need to discretize the first term numerically in Eq. (2.8).
First of all, we define a new function w(x) as follow:

w(x)= a(x)v′(x),

and then we need to examine the numerical approximations to w′(xj). Let us take the
derivative of x on both sides of Eq. (2.8) and multiply both sides by a(x). So, a simple
calculation tells us that w(x) satisfies the following differential equation:

−ε̄2a(x)w′′(x)+w(x)= ḡ(x) (2.9)
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with the force term defined by
ḡ(x)= a(x)g′(x).

On the interval Ij = [xj−1/2,xj+1/2], we can use constants to approximate the diffusion
coefficient a(x) and the force term ḡ(x) as follows:

a(x)≈ a(xj), aj, ḡ(x)≈ ḡ(xj), ḡj.

Hence, we can obtain an approximation of Eq. (2.8) on the small interval Ij

−ε̄2ajw
′′
h (x)+wh(x)= ḡj, x∈ Ij =

[

xj− 1
2
,xj+ 1

2

]

.

The general solution to the above differential equation can be written as

wh(x)=Ae
1√
aj ε̄ x

+Be
− 1√

aj ε̄ x
+(A+B)ḡj, A,B∈R. (2.10)

At xj, we can get

w′
h(xj)=

1
√

aj ε̄

(

Ae
1√
aj ε̄ x−Be

− 1√
aj ε̄ x)

=
wh

(

xj+ 1
2

)

−wh

(

xj− 1
2

)

h̄j
, (2.11)

where we denote a corrected step size h̄j as follow:

h̄j = h̄j(t,α,ε,h)=
√

aj ε̄
(

e
h√
aj2ε̄ −e

− h√
aj2ε̄
)

.

By our definition of w(x), Eq. (2.9) can be rewritten as

−ε̄2w′(x)+v(x)= g(x),

and then we can approximate w′(x) at the grid point xj by (2.11), that is,

w′(xj)≈
w
(

xj+ 1
2

)

−w
(

xj− 1
2

)

h̄j

=
a
(

xj+ 1
2

)

v′
(

xj+ 1
2

)

−a
(

xj− 1
2

)

v′
(

xj− 1
2

)

h̄j

=
aj+ 1

2
v′
(

xj+ 1
2

)

−aj− 1
2
v′
(

xj− 1
2

)

h̄j
. (2.12)

Next, our research focuses on the numerical dispersion of v′(xj±1/2). On the interval
Ij+1/2=[xj,xj+1], we use constants to approximate a(x) and g(x) as follows:

a(x)≈ a
(

xj+ 1
2

)

, aj+ 1
2
, g(x)≈ g

(

xj+ 1
2

)

,gj+ 1
2
.
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So, we approximate Eq. (2.8) on the interval Ij+ 1
2

as follows:

−ε̄2aj+ 1
2
v′′h (x)+vh(x)= gj+ 1

2
, x∈ Ij+ 1

2
=
[

xj,xj+1

]

.

Thus, the general solution of the above differential equation can be written as

vh(x)=Ae
1√

aj+1/2ε̄ x
+Be

− 1√
aj+1/2ε̄ x

+(A+B)gj+ 1
2
, A, B∈R. (2.13)

Similar to (2.11), we can obtain,

v′h
(

xj+ 1
2

)

=
vh(xj+1)−vh(xj)

h̄j+ 1
2

, (2.14)

where we denote

h̄j+ 1
2
= h̄j+ 1

2
(t,α,ε,h)=

√

aj+ 1
2
ε̄
(

e
h√

aj+1/22ε̄ −e
− h√

aj+1/22ε̄
)

.

And then we can approximate v′(x) at xj+1/2 by (2.14) as follows:

v′
(

xj+ 1
2

)

≈ v(xj+1)−v(xj)

h̄j+ 1
2

=
vj+1−vj

h̄j+ 1
2

. (2.15)

Similarly, we can discretize v′(xj−1/2) as follows:

v′
(

xj− 1
2

)

≈ v(xj)−v(xj−1)

h̄j− 1
2

=
vj−vj−1

h̄j− 1
2

. (2.16)

In summary, at the grid point xj, we can discretize the differential equation (2.9) nu-
merically by the following tailored finite point method:

− ε̄2

h̄j

(

aj+ 1
2

vj+1−vj

h̄j+ 1
2

−aj− 1
2

vj−vj−1

h̄j− 1
2

)

+vj = gj, −1< xj <1 (2.17)

with the parameters ε̄, h̄j and h̄j±1/2 defined as above. For convenience, we make the
following notation:

δ̄xvj+ 1
2
=

vj+1−vj

h̄j+ 1
2

,

the tailored finite point scheme (2.17) can be rewritten as

−ε̄2
aj+ 1

2
δ̄xvj+ 1

2
−aj− 1

2
δ̄xvj− 1

2

h̄j
+vj = gj, −1≤ xj ≤1. (2.18)



W. Kong and Z.Y. Huang / CSIAM Trans. Appl. Math., 6 (2025), pp. 1-30 9

Applying the above numerical scheme to the discretization of the first term of (2.7), we
can obtain a semi-discrete TFPM scheme to solve the initial-boundary value problem (1.1)























C
0 Dα

t Uj(t)−
ε2

h̄j

[

aj+ 1
2
δ̄xUj+ 1

2
(t)−aj− 1

2
δ̄xUj− 1

2
(t)
]

= f (xj,t), |xj|<1, 0< t≤T,

U0(t)=φ(t), U2N+1(t)=ψ(t), 0< t≤T,

Uj(0)=w(xj), −1≤ xj ≤1,

(2.19)

where the notations δ̄xUn
j±1/2 and h̄j are defined as before. Let us define a vector function

~Uh(t) as follows:

~Uh(t)= [U1(t),U2(t),··· ,U2N−2,U2N−1]
⊤ ,

and then the semi-discrete TFPM scheme (2.19) can be rewritten as the following system
of ordinary differential equations:







C
0 Dα

t
~U(t)+Aε

h(t)~U(t)=~F(t), 0< t≤T,

~U(0)= [w(x1),w(x2),··· ,w(x2N−2),w(x2N−1)]
⊤ ,

(2.20)

where the stiffness matrix Aε
h(t) is defined below

Aε
h(t)=















αε,h
1 (t)+βε,h

1 (t) −βε,h
1 (t)

−αε,h
2 (t) αε,h

2 (t)+βε,h
2 (t) −βε,h

2 (t)
. . .

. . .
. . .

−αε,h
2N−2(t) αε,h

2N−2(t)+βε,h
2N−2(t) −βε,h

2N−2(t)

−αε,h
2N−1(t) αε,h

2N−1(t)+βε,h
2N−1(t)















with the coefficient equation αε,h
j (t), βε,h

j defined as below

αε,h
j (t)=

ε2aj− 1
2

h̄j h̄j− 1
2

, βε,h
j (t)=

ε2aj+ 1
2

h̄jh̄j+ 1
2

, j=1,2,.. . ,2N−2,2N−1,

and the force term~F(t) is defined by

~F(t)=
[

f (x1,t)+αε,h
1 (t)φ(t), f (x2,t),··· , f (x2N−2,t), f (x2N−1,t)+αε,h

2N−1(t)ψ(t)
]⊤

.

Remark 2.2. Different from the numerical scheme in [12], the corrected step size h̄j±1/2

and h̄j for the spatial direction used in our new scheme is independent of the time step τ,
which avoids the inconsistency in some certain algebraic relations between h and τ.
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Remark 2.3. As h≪ ε and t>0, by the Taylor expansion, we can get

e
h√
aj 2ε̄ =1+

h√
aj 2ε̄

+
h2

8aj ε̄2
+O

(

h3

ε̄3

)

,

e
− h√

aj 2ε̄ =1− h
√

aj 2ε̄
+

h2

8aj ε̄2
+O

(

h3

ε̄3

)

.

Thus, we have

h̄j =h+O
(

h3

ε2

)

, h≪ ε.

Similarly, we can get

h̄j± 1
2
=h+O

(

h3

ε2

)

, h≪ ε.

Hence, as h ≪ ε, the given numerical scheme (2.19) will degenerate into the following
traditional finite difference method (FDM) scheme:

C
0 Dα

t Uj(t)−
ε2

h2

[

aj+ 1
2
∆xUj+ 1

2
(t)−aj− 1

2
∆xUj− 1

2
(t)
]

= f j(t), t>0, (2.21)

where we denote
∆xvj+ 1

2
=vj+1−vj, ∆xvj− 1

2
=vj−vj−1.

Besides, as h→0+ , the difference equation (2.19) will approach the singularly perturbed
subdiffusion equation (1.1).

2.3 The stability and convergence of the semi-discrete TFPM scheme

In [1, 15], a class of extremum principle for the subdiffusion equation over an open
bounded domain is formulated and proved. Furthermore, the boundedness of the so-
lution for the singularly perturbed subdiffusion equation can be obtained.

Proposition 2.3 ( [1, 15]). Let u(x,t) be a classical solution of the initial-boundary value prob-
lem (1.1). Assume the force term f (x,t)∈C(Ω), the boundary values φ(t),ψ(t)∈C([0,T]) and
the initial value w(x)∈C([−1,1]). If we denote

M0=max
{

‖w(x)‖C([−1,1]),‖φ(t)‖C([0,T]),‖ψ(t)‖C([0,T])

}

,

M1=‖ f (x,t)‖C(Ω),

then the following estimate of the solution norm holds true:

‖u(x,t)‖C(Ω)≤M0+
Tα

Γ(1+α)
M1. (2.22)

Next, we show that the semi-discrete TFPM scheme (2.19) satisfies the semi-discrete
extremum principle. Before that, we need the following lemma.
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Lemma 2.1 ( [1]). Suppose that f ∈ C(α)([0,T]) and satisfies f (t) ≤ f (t0) (t ≤ t0) for some
t0∈ (0,T). Then we have

C
0 Dα

t f (t0)≥0. (2.23)

where

C(α)([0,T]) :=
{

f ∈C([0,T])
∣

∣

C
0 Dα

t f (t)∈C([0,T])
}

.

The semi-discrete maximum principle for the semi-discrete TFPM scheme (2.19) is
given by the following proposition. The proof of this proposition is based on the idea for
the continuous case proposed in [1, 15].

Proposition 2.4 (Semi-Discrete Maximum Principle). Let the grid function {Uj(t),|xj|<1}
be a solution of the semi-discrete TFPM scheme (2.19). If the force term f j(t)≤0, and then either
Uj(t)≤0 or the function {Uj(t)} attains its positive maximum on the bottom or back-side parts

ST
h ={(xj,0)}2N

j=0

⋃{x0,x2N}×(0,T], i.e.

Uj(t)≤max

{

0, max
(xj,t)∈ST

h

Uj(t)

}

, ∀(xj,t)∈ΩT
h ={xj}2N

j=0×[0,T]. (2.24)

Proof. We prove this theorem by contradiction. We first suppose that the statement of the
theorem does not hold true, that is, there exists a point (xj0 ,t0), |xj0 |<1,0<t0≤T such that

Uj0(t0)>M=max

{

0, max
(xj,t)∈ST

h

Uj(t)

}

>0.

Let us introduce a number ∆=Uj0(t0)−M and define an auxiliary grid function

Wj(t)=Uj(t)+
∆

2

T−t

T
, (xj,t)∈ΩT

h .

The following results can be easily obtained:

Wj(t)≤Uj(t)+
∆

2
, (xj,t)∈ΩT

h , (2.25)

Wj0 (t0)≥Uj0(t0)=∆+M≥∆+Uj(t)

≥∆+Wj(t)−
∆

2
≥ ∆

2
+Wj(t), (xj,t)∈ST

h . (2.26)

From the inequality (2.26), we can know that Wj(t) cannot reach a maximum on ST
h . If

the maximum point of the grid function {Wj(t)} over the grid ΩT
h is denoted by Wj1(t1)

with |xj1 |<1,0< t1 ≤T and

Wj1 (t1)≥Wj0 (t0)≥∆+M>∆.
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According to the result of Lemma 2.1, we can know that

C
0 Dα

t Wj1 (t1)≥0. (2.27)

Furthermore, we can easily get

−
(

aj1+
1
2
δ̄xWj1+

1
2
(t1)−aj1− 1

2
δ̄xWj1− 1

2
(t1)

)

= aj1− 1
2
δ̄xWj1− 1

2
(t1)−aj1+

1
2
δ̄xWj1+

1
2
(t1)

≥ ā1

h̄

(

2Wj1 −Wj1+1−Wj1−1

)

(t1)≥0.

According to the definition of Wj(t), we have

Uj(t)=Wj(t)−
∆

2

T−t

T
.

By simple calculation, we can get

C
0 Dα

t (t−T)=
t1−α

Γ(2−α)
.

Furthermore, we can get the following relation:

C
0 Dα

t Uj(t)=
C
0 Dα

t Wj(t)+
∆

2T

t1−α

Γ(2−α)
. (2.28)

Additionally, we have

−
(

aj1+
1
2
δ̄xUj1+

1
2
−aj1− 1

2
δ̄xUj1− 1

2

)

(t1)

=−
(

aj1+
1
2
δ̄xWj1+

1
2
−aj1− 1

2
δ̄xWj1− 1

2

)

(t1)≥0. (2.29)

Combining (2.27)-(2.29), we can obtain

Lε
hUj1(t1)=

C
0 Dα

t Wj1(t1)+
∆

2T

t1−α
1

Γ(2−α)

− ε2

h̄j1

(

aj1+
1
2
δ̄xWj1+

1
2
−aj1− 1

2
δ̄xWj1− 1

2

)

(t1)>0, (2.30)

where the discrete operator Lε
h defined by

Lε
hUj(t)=

C
0 Dα

t Uj(t)−
ε2

h̄j

(

aj+ 1
2
δ̄xUj+ 1

2
−aj− 1

2
δ̄xUj− 1

2

)

(t).

On the other hand, by the conditions of the theorem, we have

Lε
hUj1(t1)= f n1

j1
≤0,

which contradicts the inequality (2.30). Above all, the assumption made at the beginning
of the theorem proof is wrong and thus this theorem is proved.



W. Kong and Z.Y. Huang / CSIAM Trans. Appl. Math., 6 (2025), pp. 1-30 13

Substituting −Uj(t) instead of in the reasoning above, the semi-discrete minimum
principle can be obtained.

Proposition 2.5 (Semi-Discrete Minimum Principle). Let a grid function {Uj(t),(xj,t)∈ΩT
h }

be a solution of the semi-discrete TFPM scheme (2.19). If the force term f j(t)≥0, and then either
Uj(t)≥0 or the function {Uj(t)} attains its negative minimum on the bottom or back-side parts

ST
h ={(xj,0)}2N

j=0

⋃{x0,x2N}×(0,T], i.e.

Uj(t)≥ min
(xj ,t)∈ST

h

Uj(t), ∀(xj,t)∈ΩT
h . (2.31)

Based on the semi-discrete extremum principle above, we can prove that the semi-
discrete TFPM scheme (2.19) is unconditionally stable.

Theorem 2.1 (Stability for the Semi-Discrete TFPM Scheme). Let a grid function {Uj(t)}2N
j=0

be a solution of the semi-discrete TFPM scheme (2.19). If we denote

M0=max
{

‖w(x)‖C([−1,1]),‖φ(t)‖C([0,T]),‖ψ(t)‖C([0,T])

}

,

M1= max
0≤j≤2N

‖ f (xj ,t)‖C([0,T]),

and then the following estimation for the solution {Uj(t)}2N
j=0 holds true:

max
j=0,...,2N

‖Uj(t)‖C([0,T])≤M0+
Tα

Γ(1+α)
M1, 0< t≤T. (2.32)

Proof. To prove the theorem, we first introduce an auxiliary grid function {Wj(t)},

Wj(t)=Uj(t)−
M1

Γ(1+α)
tα.

Then, we know

Lε
hWj(t)= Lε

hUj(t)−
M1

Γ(1+α)
C
0 Dα

t tα≤ f j(t)−M1≤0.

Then, according to Proposition 2.4, we can get that for any (xj,t)∈ΩT
h ,

Wj(t)≤max

{

0, max
(xj,t)∈ST

h

Wj(t)

}

≤max

{

0, max
(xj,t)∈ST

h

Uj(t)−
M1

Γ(1+α)
tα

}

≤max

{

0, max
(xj,t)∈ST

h

Uj(t)

}

≤M0.
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Furthermore, we can obtain for any (xj,t)∈ΩT
h ,

Uj(t)≤M0+
M1

Γ(1+α)
tα≤M0+

M1

Γ(1+α)
Tα.

Besides, we first introduce another auxiliary grid function {Vj(t)},

Vj(t)=Uj(t)+
M1

Γ(1+α)
tα.

It follows from a simple calculation to obtain

Lε
hVj(t)= Lε

hUj(t)+
M1

Γ(1+α)
C
0 Dα

t tα≥ f j(t)+M1≥0.

Then, according to Proposition 2.5, we can get that for any (xj,t)∈ΩT
h ,

Vj(t)≥ min
(xj,t)∈ST

h

Vj(t)≥ min
(xj,t)∈ST

h

{

Uj(t)+
M1

Γ(1+α)
tα

}

≥ min
(xj,t)∈ST

h

Uj(t)≥−M0.

Furthermore, we can obtain for any (xj,t)∈ΩT
h ,

Uj(t)≥−M0−
M1

Γ(1+α)
tα ≥M0−

M1

Γ(1+α)
Tα.

In summary, the content of the theorem is proved.

Remark 2.4. From the stability of the semi-discrete TFPM scheme (2.19), we can know
that the numerical solution obtained by the numerical scheme (2.19) is unique and con-
tinuously depends on the initial-boundary values φ(t),ψ(t),w(x) and the source term
f (x,t).

Next, we examine the convergence of the semi-discrete scheme (2.19). The truncation
error of the semi-discrete TFPM scheme at the internal points (xj,t) is defined as below

Thuj(t)=
C
0 Dα

t uj(t)−
ε2

h̄j

(

aj+ 1
2
δ̄xuj+ 1

2
−aj− 1

2
δ̄xuj− 1

2

)

(t)− f j(t),

where we denote
uj(t)=u(xj,t), uj± 1

2
(t)=u

(

xj± 1
2
,t
)

.

In this paper, we hope that the truncation error Thuj(t) is small even when 0< ε≪ h. It
means that we used a coarse mesh comparing with the small parameter ε. Using the es-
timations in Propositions 2.1 and 2.2 for the solution u(x,t) of the initial-boundary value
problem (1.1), we have the following results:
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Theorem 2.2 (Error Estimation for the Semi-Discrete TFPM Scheme). As 0< ε≪h, that is,
there exists a positive parameter γ1 and a positive constant C1 such that 0< ε≤C1h1+γ1 , if we
define the error function ej(t) as follow:

ej(t)=u(xj,t)−Uj(t),

and then we have the following error estimation:

max
0≤j≤2N

‖ej(t)‖C([0,T])

≤C(T,α)

{

ε2+
1

ε2
exp

[

−Ē(α,T)

(

h

ε

)
2

2−α

]

+exp

[

−C̄(α,T)
h

ε

]

}

≤C(T,α)

{

h2+2γ1+
1

h2+2γ1
exp

[

−Ē(α,T)h
2γ1
α−2

]

+exp

[

− C̄(α,T)

hγ1

]}

, (2.33)

where the constants C(T,α), Ē(α,T), C̄(α,T) are independent of x,t,ε. Besides, as 0< h≪ ε, the
following estimation holds:

max
j=0,...,2N

‖ej(t)‖C([0,T])≤C(T,α)

(

h+
h

ε
+

h2

ε2
+

h2

ε4
+

h2

ε6

)

(2.34)

with the constant C(T,α) independent of x, t, ε.

Proof. Let us start with the case of ε≪h. We can decompose the truncation error Thuj(t)
into two parts

Thuj(t)=Th,1uj(t)−Th,2uj(t),

where we denote

Th,1uj(t)=
C
0 Dα

t uj(t)− f j(t), (2.35)

Th,2uj(t)=
ε2

h̄j

(

aj+ 1
2
δ̄xuj+ 1

2
−aj− 1

2
δ̄xuj− 1

2

)

(t). (2.36)

For the first term Th,1uj(t), it follows from the results in Proposition 2.2 and the following
facts:

h−1≤ xj ≤1−h, 0< t≤T,

to obtain

|Th,2u(xj,t)|=
∣

∣ε2∂x

(

a(xj)∂x

)

u(xj,t)
∣

∣

≤
∣

∣ε2a(xj)∂xxu(xj,t)
∣

∣+
∣

∣ε2a′(xj)∂xu(xj,t)
∣

∣

≤C(T,α)






ε2+(1+ε−2)e

−Ē(α)

[

(1+xj)
2

ε2tα

]

1
2−α

+(1+ε−2)e
−Ē(α)

[

(1−xj)
2

ε2tα

]

1
2−α






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≤C(T,α)

[

ε2+e
−Ē(α)

(

h2

ε2Tα

)
1

2−α

+ε−2e
−Ē(α)

(

h2

ε2Tα

)
1

2−α

]

(2.37)

with some constants C(T,α),Ē(α) independent of x,t and ε.
Next, we estimate the second term Th,2uj(t). It follows from the estimation (2.22) in

Proposition 2.3 to obtain that the solution u(x,t) for (1.1) is uniformly bounded to ε, that
is, there is a constant C(T,α) independent of x, t and ε such that

|u(xj,t)|≤C(T,α).

Besides, as ε≪h, we have

h̄j ≥
√

aj ε̄

2
exp

[

h

2
√

aj ε̄

]

≥C(α)t
α
2 εexp

[

C(α)ht−
α
2 ε−1

]

, (2.38)

h̄j+ 1
2
≥
√

aj+ 1
2

ε̄

2
exp

[

h
√

aj+ 1
2

2ε̄

]

≥C(α)t
α
2 εexp

[

C(α)ht−
α
2 ε−1

]

(2.39)

with a constant C(T,α) independent of x,t and ε. Hence, we can obtain

|Th,2u(xj,t)|≤
(

ε2

h̄j h̄j+ 1
2

+
ε2

h̄j h̄j− 1
2

)

|uj(t)|+
ε2

h̄j h̄j− 1
2

|uj−1(t)|+
ε2

h̄jh̄j+ 1
2

|uj+1(t)|

≤2C(T,α)ε2

(

1

h̄j h̄j+ 1
2

+
1

h̄j h̄j− 1
2

)

≤C(T,α)t−
α
2 exp

[

−2C(α)
h

t
α
2 ε

]

,

≤C(T,α)

{

t−
α
2 exp

[

−C(α)
h

t
α
2 ε

]}

exp

[

−C(α)
h

T
α
2 ε

]

≤C(T,α)exp

[

−C(α)
h

T
α
2 ε

]

, (2.40)

where the constant C(T,α),C(α) are independent of x, t and ε. To sum up the above
estimations (2.37) and (2.40), we can obtain the following truncation error estimation:

|Thuj(t)|≤ |Th,1uj(t)|+|Th,2uj(t)|

≤C(T,α)

{

ε2+
1

ε2
exp

[

− Ē(α)

T
α

2−α

(

h

ε

)
2

2−α

]

+exp

[

−C(α)

T
α
2

h

ε

]

}

=C(T,α)

{

ε2+
1

ε2
exp

[

−Ē(α,T)

(

h

ε

)
2

2−α

]

+exp

[

−C̄(α,T)
h

ε

]

}

(2.41)

where the constant C(T,α), C̄(α,T), Ē(α,T) are independent of x, t, ε.
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In fact, according to the definition of truncation error Thuj(t), the error function ej(t)
satisfies the following differential equations:






















C
0 Dα

t ej(t)−
ε2

h̄j

[

aj+ 1
2
δ̄xej+ 1

2
(t)−aj− 1

2
δ̄xej− 1

2
(t)
]

=Thuj(t), 0< t≤T, |xj|<1,

e0(t)= e2N+1(t)=0, 0< t≤T,

ej(0)=0, −1≤ xj ≤1.

(2.42)

According to the result proposed in Theorem 2.1, the solution ej(t) satisfies the following
estimation:

max
j=0,...,2N

‖ej(t)‖C([0,T])

≤M0+
Tα

Γ(1+α)
M1

=0+
Tα

Γ(1+α)
max

1≤j≤2N−1
‖Thuj(t)‖C([0,T])

≤C(T,α)

{

ε2+
1

ε2
exp

[

−Ē(α,T)

(

h

ε

)
2

2−α

]

+exp

[

−C̄(α,T)
h

ε

]

}

(2.43)

with some constant C(T,α), C̄(α,T), Ē(α,T) independent of x, t, ε.
Next, we consider the case of ε≫h. From the Taylor’s expansion, we can get

h̄j =h

[

1+Cj(α)
h2

ε2

]

, h̄j+ 1
2
=h

[

1+Cj+ 1
2
(α)

h2

ε2

]

.

Hence, we have

(

h̄j h̄j+ 1
2

)−1
=h−2

[

1+C̄j+ 1
2
(α)

h2

ε2

]

,
(

h̄jh̄j− 1
2

)−1
=h−2

[

1+C̄j− 1
2
(α)

h2

ε2

]

.

And then, we can decompose the truncation error Thuj(t) into two parts

Thuj(t)=Th,1uj(t)−Th,2uj(t),

where we denote

Th,1uj(t)=
C
0 Dα

t uj(t)−
ε2

h2

[

aj+ 1
2
(uj+1−uj)−aj− 1

2
(uj−uj−1)

]

(t)− f j(t), (2.44)

Th,2uj(t)= C̄j+ 1
2
(α)aj+ 1

2
(uj+1−uj)(t)−C̄j− 1

2
(α)aj− 1

2
(uj−uj−1)(t). (2.45)

For the second part of the above decomposition, the following estimator can be obtained
from the mean value theorem:

|Th,2uj(t)|≤C(α)h
[
∣

∣∂xu
(

ξ j+ 1
2
,t
)
∣

∣+
∣

∣∂xu
(

ξ j+ 1
2
,t
)
∣

∣

]
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≤2C(α)h‖∂xu(·,t)‖∞

≤C1(α)h+C2(α)
h

ε2
exp







−Ē(α)

[

h2

ε2Tα

]

1
2−α







.

≤C(α)

(

h+
h

ε2

)

(2.46)

with some constant C(α) independent with h, t and ε. As for the first part Th,1uj(t), it
follows from the Taylor’s expansion and the mean value theorem that there are some
constants ξk ∈ [xi−1, xi+1],k=1,2,3,4 such that

Th,1uj(t)=
ε2h2

24
a(3)(ξ1)∂xu(xj,t)+

ε2h2

8
a(2)(ξ2)∂

(2)
x u(xj,t)

+
ε2h2

6
a′(ξ3)∂

(3)
x u(xj,t)+

ε2h2

12
aj∂

(3)
x u(ξ4,t).

Then, from the estimation (2.6), we can get

|Th,1uj(t)|≤C(T,α)

(

h2+
h2

ε2
+

h2

ε4
+

h2

ε6

)

(2.47)

with some constant C(α) independent with h, t and ε. Therefore, for truncation error
Thuj(t), we have the following estimation:

|Thuj(t)|≤C(T,α)

(

h+
h

ε
+

h2

ε2
+

h2

ε4
+

h2

ε6

)

(2.48)

with some constant C(α) independent with h, t and ε. So, we have as 0<h≪ ε,

max
j=0,...,2N

‖ej(t)‖C([0,T])≤C(T,α)

(

h+
h

ε
+

h2

ε2
+

h2

ε4
+

h2

ε6

)

(2.49)

with some constant C(α) independent with h, t and ε.

Remark 2.5. From the error estimation (2.33), we know that for a given h, the approxi-
mate solution {Uj(t)} obtained by the semi-discrete TFPM scheme (2.19) becomes more
and more accurate as γ1 →+∞ and ε → 0+. For a given ε, it can be seen from the es-
timation (2.34) that as h → 0+, the numerical solution Uj(t) converts to the analytical
solution u(xj,t).

Remark 2.6. In the estimation (2.33), as γ1 → 0+, the exponential items will bring rela-
tively large errors because of the resonance effect, which will affect the numerical pre-
cision of the newly constructed TFPM scheme. How to eliminate the resonance effect
at h∼ ε will be the focus of our future research.
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2.4 The L1-TFPM scheme

In generally, the analytical solutions of ordinary differential equations (2.20) cannot be
written. Therefore, we need to solve the ordinary differential equations (2.20) numeri-
cally.

Since the solution u(x,t) of the subdiffusion equation will have a weak singularity at
the initial time t= 0, we will use the following graded grid proposed in [19] in the time
direction

tk =T(k/M)γ. (2.50)

As γ= 1, we can get a uniform grid with step size τ = 1/M, as γ > 1, the graded grid
becomes finer near t=0 to capture the singularity at the initial time.

We exploit the L1 formula proposed in [20] to approximate the Caputo fractional
derivative C

0 Dα
t
~U(t) in (2.20), that is,

C
0 Dα

t
~U(t)≈

n

∑
k=1

a
(α)
n−k

Γ(2−α)
∆τ~U

(

tk− 1
2
)

, (2.51)

where the coefficients a
(α)
n−k are defined by

a
(α)
n−k=

(tn−tk−1)1−α−(tn−tk)1−α

τk
, k=0,1,2,.. . ,n−1

with the time step τk defined as τk = tk−tk−1, and we denote

∆τwk− 1
2 =wk−wk−1.

If we set

Dα
τwn=

n

∑
k=1

a
(α)
n−k

Γ(2−α)
∆

k− 1
2

τ w,

~Un =
[

Un
1 ,Un

2 ,··· ,Un
2N−2,Un

2N−1

]⊤
,

the initial value problem (2.20) can be discretized as follows:
{

Dα
τ
~Un+Aε

h(t
n)~Un =~F(tn), 0< tn ≤T,

~U0=[w(x1),w(x2),··· ,w(x2N−2),w(x2N−1)]
⊤.

(2.52)

Furthermore, we give a new L1-TFPM scheme to solve the initial-boundary value prob-
lem (1.1)























Dα
τUn

j −
ε2

h̄j

(

aj+ 1
2
δ̄xUn

j+ 1
2

−aj− 1
2
δ̄xUn

j− 1
2

)

= f n
j ,

(

xj,t
n
)

∈ΩT
h,τ,

Un
0 =φ(tn), Un

2N+1=ψ(tn), 0≤ tn ≤T,

U0
j =w(xj), −1≤ xj ≤1,

(2.53)

where the notations Dα
τUn

j , δ̄xUn
j±1/2 and h̄j are defined as before.
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Remark 2.7. Similar to the discussion in Remark 2.1, we can know that as h≪ε, the newly
proposed L1-TFPM scheme will degenerate to the traditional L1-FDM scheme,

Dα
τUn

j −
ε2

h2

[

aj+ 1
2
∆xUn

j+ 1
2
−aj− 1

2
∆xUn

j− 1
2

]

= f n
j , tn

>0, (2.54)

so it is an unconditionally consistent numerical scheme.

Next, we show that the newly proposed L1-TFPM scheme (2.53) satisfies the discrete
extremum principle. Before that, we need the following lemma.

Lemma 2.2. Let the grid function {vk}M
k=1 be defined on the grid {tk}M

k=1. If vn is the maximum

point of {vk}M
k=1, then we have

Dα
τvn ≥0. (2.55)

Proof. We can write Dα
τvn as

Dα
τvn =

1

Γ(2−α)

n

∑
k=1

bk(v
n−vk−1)

=
1

Γ(2−α)

n

∑
k=1

bk

n

∑
l=k

∆τvl− 1
2

=
1

Γ(2−α)

n

∑
k=1

( k

∑
l=1

bl

)

∆τvk− 1
2 .

According to the definition of Dα
τvn, it is easy to see that

k

∑
l=1

bl = a
(α)
n−k, k=1,2,.. . ,n.

If we set a
(α)
n =0, we can obtain

bk = a
(α)
n−k−a

(α)
n−k+1, k=1,2,.. . ,n.

It follows from Lagrange’s mean value theorem that there exists a parameter 0< θk < 1
such that

α
(α)
n−k=

1−α
[

tn−θk(tk)−(1−θk)tk−1
]α ,

According to the monotonicity of the function H(t)=(1−α)t−α, we can obtain that

bk >0, k=1,2,.. . ,n.

If vn is the maximum point of {vk}M
k=1, and then we can obtain

vn−vk−1≥0, k=1,2,.. . ,n.
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Furthermore, we can get

Dα
τvn =

1

Γ(2−α)

n

∑
k=1

bk(v
n−vk−1)≥0.

The proof is complete.

The discrete maximum principle for the L1-TFPM scheme (2.53) is given by the fol-
lowing proposition.The proof of the following proposition is based on the idea for the
traditional L1-FDM proposed in [1].

Proposition 2.6 (Discrete Maximum Principle). Let a grid function {Un
j ,(xj,t

n)∈ΩT
h,τ} be

a solution of the L1-TFPM scheme (2.53). If the force term f n
j ≤0, and then either Un

j ≤0 or the

function {Un
j } attains its positive maximum on the bottom or back-side parts

ST
h,τ =

{(

xj,t
0
)}2N

j=0

⋃
{(

x0,tn
)}TM

n=0

⋃
{(

x2N ,tn
)}TM

n=0
,

i.e.

Un
j ≤max

{

0, max
(xj,tn)∈ST

h,τ

Un
j

}

, ∀
(

xj,t
n
)

∈ΩT
h,τ . (2.56)

Proof. We prove this theorem by contradiction. We first suppose that the statement of the
theorem does not hold true, that is, there exists a point (xj0 ,tn0),−1< xj0 < 1,0< tn0 ≤ T
such that

Un0
j0
>M=max

{

0, max
(xj,tn)∈ST

h,τ

Un
j

}

>0.

Let us introduce a number ∆=Un0

j0
−M and define an auxiliary grid function

Wn
j =Un

j +
∆

2

T−tn

T
,
(

xj,t
n
)

∈ΩT
h,τ.

The following results can be easily obtained

Wn
j ≤Un

j +
∆

2
,

(

xj,t
n
)

∈ΩT
h,τ , (2.57)

Wn0
j0
≥Un0

j0
=∆+M≥∆+Un

j ≥∆+Wn
j −

∆

2
≥ ∆

2
+Wn

j ,
(

xj,t
n
)

∈ST
h,τ . (2.58)

From the inequality (2.58), we can know that Wn
j cannot reach a maximum on ST

h,τ. If

the maximum point of the grid function {Wn
j } over the grid ΩT

h,τ is denoted by Wt1
j1

with

−1< xj1 <1,0< tn1 ≤T and

Wt1
j1
≥Wn0

j0
≥∆+M>∆.
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According to Lemma 2.2, we know that

Dα
τWn1

j1
≥0. (2.59)

Furthermore, we can easily get

−
(

aj1+
1
2
δ̄xWn1

j1+
1
2

−aj1− 1
2
δ̄xWn1

j1− 1
2

)

= aj1− 1
2
δ̄xWn1

j1− 1
2

−aj1+
1
2
δ̄xWn1

j1+
1
2

≥ ā1

h̄

(

2Wn1
j1
−Wn1

j1+1−Wn1
j1−1

)

≥0.

According to the definition of Wn
j , we have

Un
j =Wn

j −
∆

2

T−tn

T
.

By simple calculation, we can get

Dα
τ(t

n−T)=
(tn)1−α

Γ(2−α)
.

Furthermore, we can get the following relation:

Dα
τUn

j =Dα
τWn

j +
∆

2T

(tn)1−α

Γ(2−α)
. (2.60)

Additionally, we have

−
(

aj1+
1
2
δ̄xUn1

j1+
1
2

−aj1− 1
2
δ̄xUn1

j1− 1
2

)

=−
(

aj1+
1
2
δ̄xWn1

j1+
1
2

−aj1− 1
2
δ̄xWn1

j1− 1
2

)

≥0. (2.61)

Combining (2.59)-(2.61), we can obtain

Lε
h,τUn1

j1
=Dα

τWn1
j1
+

∆

2T

(tn1)1−α

Γ(2−α)
− ε2

h̄j1

(

aj1+
1
2
δ̄xWn1

j1+
1
2

−aj1− 1
2
δ̄xWn1

j1− 1
2

)

>0, (2.62)

where the discrete operator Lε
h,τ defined by

Lε
h,τUn

j =Dα
τUn

j −
ε2

h̄j

(

aj+ 1
2
δ̄xUn

j+ 1
2
−aj− 1

2
δ̄xUn

j− 1
2

)

.

On the other hand, by the conditions of the theorem, we have

Lε
h,τUn1

j1
= f n1

j1
≤0,

which contradicts the inequality (2.62). Above all, the assumption made at the beginning
of the theorem proof is wrong and thus this theorem is proved.
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Substituting −Un
j instead of in the reasoning above, the discrete minimum principle

can be obtained.

Proposition 2.7 (Discrete Minimum Principle). Let a grid function {Un
j ,(xj,t

n)∈ΩT
h,τ} be

a solution of the L1-TFPM scheme (2.53). If the force term f n
j ≥0, and then either Un

j ≥0 or the

function {Un
j } attains its negative minimum on the bottom or back-side parts

ST
h,τ =

{(

xj,t
0
)}2N

j=0

⋃

{

(

x0,tn
)}TM

n=0

⋃
{(

x2N ,tn
)

}TM

n=0
,

i.e.
Un

j ≥ min
(xj,tn)∈ST

h,τ

Un
j , ∀

(

xj,t
n
)

∈ΩT
h,τ . (2.63)

Based on the discrete extremum principle above, we can prove that the newly pro-
posed L1-TFPM scheme (2.53) is unconditionally stable.

Theorem 2.3 (The Stability of theL1-TFPM Scheme). Let a grid function {Un
j ,(xj,t

n)∈ΩT
h,τ}

be a solution of the L1-TFPM scheme (2.53). If we denote

M0=max{‖w(x)‖C([−1,1]),‖φ(t)‖C([0,T]),‖ψ(t)‖C([0,T])},

M1=‖ f (x,t)‖C(Ω) ,

and then the following estimate of the solution norm holds true:

∥

∥Un
j

∥

∥

∞
≤M0+

Tα

Γ(1+α)
M1. (2.64)

Proof. To prove the theorem, we first introduce an auxiliary grid function {Wn
j },

Wn
j =Un

j −
M1

Γ(1+α)
(tn)α .

According to the analysis in [14], if we denote

ω1+α(t)=
tα

Γ(1+α)
,

we have that

C
0 Dα

t ω1+α(t
n)−Dα

τωn
1+α=

n

∑
k=1

∫ tk

tk−1
ω′′

1+α(s)Π̃kω2−α(t
n−s)ds,

where the operator Π̃k is an interpolation operator with

Π̃kω2−α(t
n−s)≥0.
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Besides, we can obtain

ω′′
1+α(t)=− 1−α

Γ(α)t2−α
<0, t>0.

Furthermore, we can get
Dα

τωn
1+α≥C

0 Dα
t ω1+α(t

n)=1.

Then, we know
Lε

h,τWn
j = Lε

h,τUn
j −M1Dα

τωn
1+α≤ f n

j −M1≤0.

Then, according to Proposition 2.6, we can get that for any (xj,t
n)∈ΩT

h,τ,

Wn
j ≤max

{

0, max
(xj,tn)∈ST

h,τ

Wn
j

}

≤max

{

0, max
(xj,tn)∈ST

h,τ

Un
j −

M1

Γ(1+α)
(tn)α

}

≤max

{

0, max
(xj,tn)∈ST

h,τ

Un
j

}

≤M0.

Furthermore, we can obtain for any (xj,t
n)∈ΩT

h,τ,

Un
j ≤M0+

M1

Γ(1+α)
(tn)α≤M0+

M1

Γ(1+α)
Tα.

Besides, we first introduce another auxiliary grid function {Vn
j },

Vn
j =Un

j +
M1

Γ(1+α)
(tn)α.

It follows from a simple calculation to obtain

Lε
h,τVn

j = Lε
h,τUn

j +M1Dα
τωn

1+α≥ f n
j +M1≥0.

Then, according to Proposition 2.7, we can get that for any (xj,t
n)∈ΩT

h,τ,

Vn
j ≥ min

(xj,tn)∈ST
h,τ

Vn
j ≥ min

(xj,tn)∈ST
h,τ

{

Un
j +

M1

Γ(1+α)
(tn)α

}

≥ min
(xj,tn)∈ST

h,τ

Un
j ≥−M0.

Furthermore, we can obtain for any (xj,t
n)∈ΩT

h,τ,

Un
j ≥−M0−

M1

Γ(1+α)
(tn)α≥M0−

M1

Γ(1+α)
Tα.

In summary, the content of the theorem is proved.

Remark 2.8. From the stability of the L1-TFPM scheme (2.53), we can know that the
numerical solution obtained by the numerical scheme (2.53) is unique and continuously
depends on the initial-boundary values φ(t),ψ(t),w(x) and the source term f (x,t).
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3 Numerical experiments

In this section, several numerical examples are given to demonstrate the validity of the
newly proposedL1-TFPM scheme (2.53). We consider an initial-boundary value problem
on Ω=[−1,1]×[0,1] as follow:















C
0 Dα

t u(x,t)−ε2∂x

[

(x2+1)∂x

]

u(x,t)=0.3e
1

1+t (1−x2), (x,t)∈Ω,

u(−1,t)= t2, u(1,t)= t2, 0≤ t≤1,

u(x,0)= e
1

x2−1 , x∈ [−1,1].

(3.1)

We use the L1-TFPM scheme (2.53) to solve the above initial-boundary value problem.
We first examine whether the newly proposed L1-TFPM scheme (2.53) can satisfy the

discrete extremum principle. The source term f (x,t) = t(x2+2) of (3.1) is non-negative
and both the initial and boundary values of (3.1) are non-negative. According to the
extremum principle, the solution u(x,t) of the initial-boundary value problem (3.1) is
greater than zero in Ω0 =(−1,1)×(0,T]. Fig. 1 shows the numerical solution computed
from the L1-TFPM scheme of (3.1) for different α and ε on a uniform grid with h,τ=0.01.
It can be seen that for different ε and α, the numerical solutions Uh,τ are all greater than 0
on the internal grid. Thus, the numerical solution computed from the L1-TFPM scheme
(2.53) satisfies the discrete extremum value principle.

Figure 1: The numerical solution of the initial-boundary value problem (3.1) for different α and ε as h,τ=0.01.
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Next, we examine the numerical precision of the L1-TFPM scheme. Since the ana-
lytical solution u(x,t) for the initial-boundary value problem (3.1) cannot be given, the
numerical solution on a uniform grid with h=1/1600,τ =0.0005 is selected as the refer-
ence solution Un

exact,j. And then we use the L∞ error norm En
h,τ defined below to examine

the numerical error of the numerical solution

En
h,τ = max

0≤j≤2N+1

∣

∣Un
j −Un

exact,j

∣

∣.

We compare the newly proposed L1-TFPM scheme with the traditional L1-FDM scheme
and the L1-TFPM scheme given in [12]. For convenience, we will label the newly pro-
posed L1-TFPM scheme as L1-TFPM-I scheme, and then label the L1-TFPM scheme
given in [12] as L1-TFPM-II scheme.

Fig. 2 shows the numerical precision for the L1-TFPM-I scheme as h ≪ ε. The step
size we chose for the time direction is a uniform grid with τ=0.0005. It can be seen that
for different ε, the L∞ error EM

h,τ decays with a first-order velocity when h→0+ , which is
consistent with the convergence rate given by the estimation (2.34).

Tables 1-3 show the L∞ errors of the numerical solution for (3.1) with different ε and α
as τ = 0.0005 and h= 0.05. It can be seen that as ε→ 0+, the numerical error of the nu-
merical solution obtained by the L1-TFPM-I scheme approaches zero, which is consistent
with the error estimation (2.33) in Theorem 2.1. As h∼ ετα/2, the numerical precisions of
the L1-TFPM-I scheme and the L1-FDM scheme are close, and both are higher than the
numerical precision of the L1-TFPM-II scheme. In the case of 0< ε≪ h, the numerical
precisions of the L1-TFPM-I scheme and the L1-TFPM-II scheme are similar and much
higher than that of the L1-FDM scheme.

Tables 4-6 show the L∞ errors of the numerical solution for (3.1) with different spatial
step h and α as τ= 0.0005. When h≫ ε, both of the numerical solutions obtained by the

Figure 2: The numerical precision for the L1-TFPM-I scheme as h≪ ε: (1) ε=1; (2) ε=0.1.
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Table 1: L∞ errors of the numerical solution for (3.1) with different ε as α=0.2,h=0.05 and τ=0.0005.

ε L1-TFPM-I scheme L1-TFPM-II scheme L1-FDM scheme

0.1 3.4528×10−2 4.0608×10−2 3.3228×10−2

0.01 5.3799×10−3 1.8642×10−2 3.7036×10−2

0.001 8.9405×10−6 8.9405×10−6 6.4459×10−4

0.0001 3.3023×10−8 3.3023×10−8 6.4210×10−6

Table 2: L∞ errors of the numerical solution for (3.1) with different ε as α=0.5,h=0.05 and τ=0.0005.

ε L1-TFPM-I scheme L1-TFPM-II scheme L1-FDM scheme

0.1 3.1803×10−2 1.1670×10−1 3.0844×10−2

0.01 1.4503×10−2 9.1132×10−3 3.3846×10−2

0.001 8.9571×10−6 8.9571×10−6 4.7084×10−4

0.0001 3.8543×10−8 3.8543×10−8 4.6884×10−6

Table 3: L∞ errors of the numerical solution for (3.1) with different ε as α=0.8,h=0.05 and τ=0.0005.

ε L1-TFPM-I scheme L1-TFPM-II scheme L1-FDM scheme

0.1 2.8829×10−2 5.6539×10−1 2.8382×10−2

0.01 2.1181×10−2 2.4831×10−3 2.8873×10−2

0.001 7.6790×10−6 7.6790×10−6 3.3392×10−4

0.0001 4.8452×10−8 4.8452×10−8 3.3362×10−6

Table 4: L∞ errors of the numerical solution for (3.1) with different spatial step h as α = 0.2, ε = 0.001 and
τ=0.0005.

Spatial step h L1-TFPM-I scheme L1-TFPM-II scheme L1-FDM scheme

1/10 8.9001×10−6 8.9001×10−6 1.5197×10−4

1/20 8.9405×10−6 8.9405×10−6 6.4459×10−4

1/40 9.4109×10−6 9.3687×10−6 2.5944×10−3

1/80 1.3711×10−4 4.3844×10−4 1.0232×10−2

1/160 3.9536×10−3 7.4460×10−3 3.1271×10−2

1/320 9.0141×10−3 5.9844×10−2 3.9864×10−2

Table 5: L∞ errors of the numerical solution for (3.1) with different spatial step h as α = 0.5, ε = 0.001 and
τ=0.0005.

Spatial step h L1-TFPM-I scheme L1-TFPM-II scheme L1-FDM scheme

1/10 8.9571×10−6 8.9571×10−6 1.0933×10−4

1/20 8.9571×10−6 8.9571×10−6 4.7084×10−4

1/40 9.4609×10−6 9.1500×10−6 1.8954×10−3

1/80 3.6310×10−4 9.1500×10−6 7.5452×10−3

1/160 8.9952×10−3 2.9487×10−3 2.6133×10−2

1/320 2.2670×10−2 5.9480×10−2 4.1473×10−2



28 W. Kong and Z.Y. Huang / CSIAM Trans. Appl. Math., 6 (2025), pp. 1-30

Table 6: L∞ errors of the numerical solution for (3.1) with different spatial step h as α = 0.8, ε = 0.001 and
τ=0.0005.

Spatial step h L1-TFPM scheme 1 L1-TFPM scheme 2 L1-FDM scheme

1/10 7.6790×10−6 7.6790×10−6 7.6152×10−5

1/20 7.6790×10−6 7.6790×10−6 3.3392×10−4

1/40 1.9843×10−5 7.7653×10−6 1.3438×10−3

1/80 1.1916×10−3 7.7653×10−6 5.3727×10−3

1/160 1.3215×10−2 6.1004×10−4 2.0384×10−2

1/320 3.5114×10−2 3.4073×10−2 4.2229×10−2

L1-TFPM-I scheme and the L1-TFPM-II scheme are more accurate than that obtained by
L1-FDM scheme. However, in the case of h→ε, the precision of numerical solutions given
by these three numerical schemes decreases due to the resonance effect, especially the L1-
TFPM-II scheme. However, in this case, the accuracy of our new L1-TFPM scheme is still
higher than that of the traditional L1-FDM scheme for different α. It can be seen from the
numerical results that the smaller α is, the more obvious the resonance effect will be.

In addition, we also investigate the numerical accuracy of the time direction for the
L1-TFPM-I scheme. Fig. 1 shows that the solution u(x,t) of (3.1) has a weak singularity
at the initial time t = 0. We use the L1-TFPM-I scheme to solve (3.1) on graded grids as
ε=0.001 and h=1/1600. We still use the L∞ error norm En

h,τ defined above to investigate
the numerical error. Fig. 3 shows the numerical accuracy in time direction for different α

Figure 3: The numerical accuracy in time direction for different α as ε=0.001 and h=1/1600.
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and γ. The L1-TFPM-I scheme only has O(τα) precision on the uniform grid due to the
non-smooth initial value. However, the numerical accuracy can be greatly improved by
using a non-uniform grid with γ>1 in the direction of time.

To sum up, the newly proposedL1-TFPM scheme can maintain the discrete extremum
principle and has high numerical accuracy as h≫ ε. However, as h∼ ε, the resonance ef-
fect results in a large loss of numerical accuracy. How to eliminate the effect of resonance
will be the focus of our future research.

4 Conclusion

For the singularly perturbed subdiffusion equations on a bounded domain ΩT
B, the solu-

tion u(x;t) has a boundary layer of width O(ε) near the boundary imposed non-smooth
boundary values, which presents great challenges for the construction of efficient numer-
ical scheme. In order to construct a high-precision numerical scheme for the singularly
perturbed subdiffusion equations on rough grids, we construct a new scheme based on
the idea of tailored finite point method. The newly proposed L1-TFPM scheme can pre-
serve the discrete extremum principle and has a higher numerical accuracy than the tra-
ditional L1-FDM scheme as h≫ ε. But when ε∼ h, the resonance effect will reduce the
accuracy of the newly proposed scheme, which needs our further study.
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