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Abstract. The mean curvature flow describes the evolution of a surface (a curve) with
normal velocity proportional to the local mean curvature. It has many applications in
mathematics, science and engineering. In this paper, we develop a numerical method
for mean curvature flows by using the Onsager principle as an approximation tool.
We first show that the mean curvature flow can be derived naturally from the Onsager
variational principle. Then we consider a piecewise linear approximation of the curve
and derive a discrete geometric flow. The discrete flow is described by a system of
ordinary differential equations for the nodes of the discrete curve. We prove that the
discrete system preserve the energy dissipation structure in the framework of the On-
sager principle and this implies the energy decreasing property. The ODE system can
be solved by the improved Euler scheme and this leads to an efficient fully discrete
scheme. We first consider the method for a simple mean curvature flow and then ex-
tend it to the volume preserving mean curvature flow and also a wetting problem on
substrates. Numerical examples show that the method has optimal convergence rate
and works well for all the three problems.
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1 Introduction

Mean curvature flow describes the process of surface evolution, where a surface moves
in its normal direction with a velocity equal to its mean curvature, i.e.

~v=−H~n, (1.1)

where ~v denotes the velocity of motion of the surface, and H denotes the mean curva-
ture of the surface. ~n is the unit normal vector of the surface. The mean curvature flow
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first appeared in materials science in the 1920s, and the general mathematical model was
first proposed in 1957 in [40], where Mullins used it to describe how grooves develop on
the surfaces of hot polycrystals. The mean curvature flow has found numerous applica-
tions. One is in image smoothing, where it is used to improve image quality by removing
unnecessary noise and enhancing specific features without altering the transmitted infor-
mation [27]. Additionally, the mean curvature flow has been employed to model a special
form of the reaction-diffusion equation in chemical reactions [45].

The numerical approximation of mean curvature flow originates from the pioneering
work of Dziuk [19] in 1990. He proposed a parametric finite element method (PFEM) to
solve the problem based on the observation that the mean curvature flow is a diffusion
equation for the surface embedding in a bulk region. However, as the surface evolves,
the nodes in the PFEMs may overlap, leading to mesh distortion [28]. Subsequently,
various techniques have been introduced in PFEMs that allow points on interpolated
curves or surfaces to shift tangentially to produce a better distribution of nodes. For
example, Deckelnick and Dziuk [14] introduced an artificial tangential velocity. By sim-
ilar motivation, Elliott and Fritz [22] employed a DeTurck’s trick to introduce a tangen-
tial velocity. A widely used method is the parametric finite element method developed
by Barrett et al. [5–7]. They utilize a different variational form which can induce tan-
gential velocity for the mesh nodes automatically. The method have been generalized
some other geometrical flows [2–4, 8–10, 28, 29, 36]. Recently, there are significant pro-
gresses in rigorous convergence analysis for discrete schemes for mean curvature flows
and some other geometric flows [1, 31–34]. In addition, there exist many other methods
to approximate the mean curvature flow numerically, such as the threshold dynamics
method [23, 39, 46, 49, 51], the level set method [12, 25, 44, 47, 48, 53], and the phase field
method [20, 21, 24, 26], etc.

In this paper, we develop a new finite element method for mean curvature flow by
using the Onsager principle as an approximation tool. We consider three different prob-
lems, namely the standard mean curvature flow, the volume preserving mean curvature
flow and a wetting problem with contact with substrate. We show that the dynamic
equations of all the three problems can be derived naturally by the Onsager principle.
Furthermore, by considering a piecewise linear approximation of the surface, we can
derive semi-discrete problems which preserve the energy dissipation relations just as
the continuous problems. The discrete volume can also be preserved if the continuous
problem preserve the volume. The semi-discrete problems can be further discretized in
time by the improved Euler scheme. Numerical examples show that the method works
well for all the three problems. In particular, it has optimal convergence rate in space for
a mean curvature flow with analytic solutions. We mainly consider mean curvature flows
of a curve in two dimensional space, also known as curve shortening flow in literature.
Our method can be generalized to higher dimensional problems while there will be more
restrictions on the time discrete schemes to avoid mesh distortion.

The structure of the paper is as follows. In Section 2, we introduce the main idea
to use the Onsager variational principle as an approximation tool. In Section 3, we first


