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Abstract. In this work, we develop and analyze a family of up to fourth-order, uncon-
ditionally energy-stable, single-step schemes for solving gradient flows with global
Lipschitz continuity. To address the exponential damping/growth behavior observed
in Lawson’s integrating factor Runge-Kutta approach, we propose a novel strategy to
maintain the original system’s steady state, leading to the construction of an exponen-
tial Runge-Kutta (ERK) framework. By integrating the linear stabilization technique,
we provide a unified framework for examining the energy stability of the ERK method.
Moreover, we show that certain specific ERK schemes achieve unconditional energy
stability when a sufficiently large stabilization parameter is utilized. As a case study,
using the no-slope-selection thin film growth equation, we conduct an optimal rate
convergence analysis and error estimate for a particular three-stage, third-order ERK
scheme coupled with Fourier pseudo-spectral discretization. This is accomplished
through rigorous eigenvalue estimation and nonlinear analysis. Numerical experi-
ments are presented to confirm the high-order accuracy and energy stability of the
proposed schemes.
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1 Introduction

Gradient flows represent a significant class of physical models driven by free energy,
characterized by a specific dissipation mechanism. Numerous challenges in fluid dy-
namics and material science can be effectively represented through gradient flow equa-
tions. Specifically, one main characteristic of this problem from a physical aspect is that
the energy functional is decreasing all the time. Therefore, it is essential to develop ef-
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ficient and accurate numerical schemes that preserve the energy dissipation property at
the discrete level. The primary objective of this paper is to develop a class of high order,
unconditionally energy stable schemes for gradient flows. To illustrate the main idea, we
consider a general gradient flow model with total free energy in the following form:

E(u)=
∫

Ω

1

2
u·Lu+F(u)dx, (1.1)

where Ω is a bounded domain, L is a symmetric non-negative operator and F(u) is a non-
linear potential function. With a specific symmetric non-negative operator G that com-
mutes with L, the gradient flow can be expressed with respect to the aforementioned
energy as follows:

ut=−G δE(u)

δu
=−G

(
Lu+ f (u)

)
, (1.2)

where f (u) := F′(u). A common choice for the operator G is 1 or −∆, corresponding to
the L2 gradient flow and H−1 gradient flow, respectively.

Gradient flow models often exhibit strong stiffness and nonlinearity, and their steady
states, which typically require long-time simulations to reach, are of considerable inter-
est in practice. Therefore, there is a significant demand for numerical algorithms that
are both efficient and accurate. Additionally, to avoid nonphysical phenomena appear-
ing in the numerical solution, it is essential to preserve the energy dissipation during the
numerical simulation. Consequently, various strategies have been designed to solve gra-
dient flows, such as the nonlinear convex splitting scheme [8, 36, 43, 44], linear splitting
(stabilization) technique [11, 34, 39], invariant energy quadratization (IEQ) method [45],
and scalar auxiliary variable (SAV) algorithm [37, 38]. Among these, the nonlinear con-
vex splitting method is known for its capacity to ensure unconditional energy stabil-
ity and unique solvability. However, these methods often require solving nonlinear
systems at each time step. By reformulating the energy functionals, Yang, Shen, and
co-authors [37, 38, 45, 46] successively proposed the IEQ method and the SAV method.
These methods can be conveniently utilized to construct schemes that are linearly solv-
able and unconditionally energy stable, albeit with the energy in these schemes being
in a modified form. In recent years, the linear splitting (stabilization) technique has re-
ceived much attention because of its capability to enlarge the stability region of linear
implicit schemes. As a result, a large number of linearly implicit schemes, including
the implicit-explicit Runge-Kutta (IMEX RK), exponential differencing (ETD) multi-step
(MS), and ETD Runge-Kutta (ETDRK) schemes, have attracted considerable interest for
solving gradient flow problems [6,21,40]. For general gradient flow equations with global
Lipschitz assumptions, Fu and Yang [10] established the unconditional energy stability
for a second-order stabilization ETDRK scheme with respect to the original energy. Intro-
ducing a third-order accurate Douglas-Dupont stabilization term, Cheng et al. [4] derived
energy stability for a third-order ETDMS scheme regarding a modified energy with a few
numerical correction terms. Recently, based on the global Lipschitz condition and the use
of linear stabilization terms, Fu et al. [9] developed a four-stage, third-order stabilization


