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Abstract. This paper presents an innovative approach to computational acoustic imag-
ing of biperiodic surfaces, exploiting the capabilities of an acoustic superlens to over-
come the diffraction limit. We address the challenge of imaging physical entities in
complex environments by considering the partial differential equations that govern
the physics and solving the corresponding inverse problem. We focus on imaging in-
finite rough surfaces, specifically 2D diffraction gratings, and propose a method that
leverages the transformed field expansion. We derive a reconstruction formula con-
necting the Fourier coefficients of the surface and the measured field, demonstrating
the potential for unlimited resolution under ideal conditions. We also introduce an ap-
proximate discrepancy principle to determine the cut-off frequency for the truncated
Fourier series expansion in surface profile reconstruction. Furthermore, we elucidate
the resolution enhancement effect of the superlens by deriving the discrete Fourier
transform of white Gaussian noise. Our numerical experiments confirm the effective-
ness of the proposed method, demonstrating high subwavelength resolution even un-
der slightly non-ideal conditions. This study extends the current understanding of
superlens-based imaging and provides a robust framework for future research.

AMS subject classifications: 35R30, 74J25, 78A46
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gratings.

1 Introduction

Computational imaging is an advanced method that employs computational algorithms
to extract information about physical entities from emitted or scattered waves. In contrast
to direct imaging, which relies on lens systems, computational imaging offers a versatile
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approach. Widely applied in ultrasound imaging, computed tomography, and magnetic
resonance imaging, it enables accurate quantitative reconstructions and access to infor-
mation beyond the reach of direct imaging techniques. However, both computational
and direct imaging face a common limitation – the Abbe diffraction limit [37] – which
dictates that the maximum achievable resolution is approximately half the wavelength
of the wave used in the imaging process.

The field of metamaterials has witnessed significant progress since Veselago [43] in-
troduced the concept of negative-index material. Negative permittivity and permeability
characterize these materials, resulting in optical properties contrary to traditional mate-
rials. Pendry [40] expanded this concept by proposing a superlens made from negative-
index materials . This superlens, utilizing a material with a negative refractive index,
was theorized to amplify the evanescent field, achieving unlimited resolution in theory.
This concept extended to acoustic waves [28], where a negative index involves both neg-
ative density and negative bulk modulus. Theoretical propositions were supported by
numerous demonstrations of negative index acoustic metamaterials [3, 14, 18, 20]. Subse-
quently, the idea of an acoustic superlens was proposed and validated through various
methods [1, 16, 17, 21].

However, when dealing with physical entities such as obstacles or inhomogeneous
mediums, as in many applications, direct imaging by a superlens becomes challeng-
ing due to complicated scattered waves. We address this challenge through computa-
tional imaging, specifically by considering the partial differential equations underlying
the physics and solving the corresponding inverse problem. This paper focuses on imag-
ing infinite rough surfaces defined by biperiodic surfaces, known as 2D diffraction grat-
ings. These gratings find applications not only in optics but also in acoustics for manip-
ulating sound waves [38, 42, 47].

The forward scattering problem involves determining the diffracted field given
a diffraction grating and incident field. The inverse scattering problem, on the other
hand, aims to reconstruct the surface profile of the grating from measured data of the
diffracted field for specific incident fields. Theoretical questions regarding the inverse
diffraction problems, such as uniqueness and stability, have been extensively explored
[2, 5, 11, 12, 23, 26, 44]. Computational methods often involve iterative algorithms [10, 13,
22, 41, 48, 50] or direct methods based on indicator functions [4, 24, 27, 45, 46, 49].

For surfaces with small amplitude, as assumed in this paper, the inverse problem
can be linearized and solved using a method based on the transformed field expansion
(TFE). Originally designed for direct rough surface scattering problems [39], TFE has
been extended to various contexts, providing quantitative and computationally efficient
solutions [6, 7, 9, 15, 25, 29–32, 35, 36]. The small-amplitude assumption allows proving
the uniqueness of the inverse problem for a single incident field, along with establishing
convergence and error estimates for the computational method [8, 34].

This paper presents an imaging scheme where an acoustic superlens is placed over
a biperiodic surface with small amplitude. A downward-propagating plane wave is inci-
dent upon the structure, and the field is measured on the superlens’s top surface. Utiliz-
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ing the transformed field expansion, we derive a reconstruction formula based on a sim-
ple relation connecting the Fourier coefficients of the surface and those of the measured
field. We illustrate that achieving unlimited resolution is possible when the superlens is
ideal. Furthermore, our numerical experiments indicate that high subwavelength resolu-
tion can be attained even for slightly non-ideal parameters.

Extending previous work [33], where we initially proposed imaging periodic surfaces
with a superlens in the framework of inverse scattering, this paper addresses biperiodic
surfaces with additional considerations. First, we introduce an approximate discrepancy
principle to determine the cut-off frequency for the truncated Fourier series expansion
in surface profile reconstruction, demonstrating its effectiveness through numerical ex-
periments. Second, we explicitly derive the discrete Fourier transform of white Gaussian
noise, elucidating the resolution enhancement effect of the superlens. Third, when com-
paring the imaging method’s performance, we utilize signal-to-noise ratio rather than
absolute noise level as a fair reference in practical applications.

The remainder of the paper is organized as follows. In Section 2, we establish the
mathematical model for the forward diffraction problem. In Section 3, we apply the
transformed field expansion to obtain zero-th and first-order closed-form solutions for
the forward problem. These solutions are used in Section 4 to derive a reconstruction
formula for the inverse problem and devise an approximate discrepancy principle for
the cut-off frequency. We conduct comprehensive numerical experiments in Section 5
to test various aspects of the proposed method using smooth and non-smooth surface
profiles. In Section 6, we conclude the paper with directions for future research.

2 Forward scattering problem

Consider the Helmholtz equation

∇·
(

1

ρ
∇u

)

+
ω2

κ
u=0, (2.1)

which serves as the foundational partial differential equation for various wave phenom-
ena. Here, ω represents the angular frequency arising from the implicit time depen-
dence e−iωt. In the context of acoustic waves, ρ denotes the mass density, and κ corre-
sponds to the bulk modulus. In the case of electromagnetic waves, the variables ρ and
κ respectively correspond to the electric permittivity and magnetic permeability, or vice
versa, contingent upon the specific formulation of the physical model. Without loss of
generality, we consider acoustic waves in the rest of the paper.

Let Γ f : z= f (x,y),(x,y)∈R
2 be a biperiodic surface, where

f (x+n1Λ1,y+n2Λ2)= f (x,y), ∀(n1,n2)∈Z
2

for some positive constants Λ1,Λ2. In addition, we assume f is a small deformation of
the plane z=0, i.e.

f (x,y)= εg(x,y), (2.2)
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where 0< ε≪1 is a prescribed constant, referred to as the deformation parameter in this
paper.

Suppose ρ=κ=1 in the half space z> f (x,y). Let the incident wave be given by

uin= e−iωz, z> f (x,y) (2.3)

a plane wave propagating in the −ẑ direction.
Assume Γ f is impenetrable so that a boundary condition can be imposed. For sound

soft boundary, we have the Dirichlet boundary condition

u=0 on Γ f .

For sound hard boundary, we have the Neumann boundary condition ∂νu=0. A Robin
boundary condition can be used in general. In this paper, we focus on the Dirichlet
boundary condition. The extensions to other boundary conditions can be considered
routine. Next we place a slab Ω : a < z < b above Γ f , and its constituting medium has
constant mass density ρ and constant bulk modulus κ. We define the boundaries Γb :z=b,
Γa : z= a and the domains Ω : a< z<b, Ω f : f (x,y)< z< a. A conceptual diagram is shown
in Fig. 1.

By the continuity of the pressure field and the normal component of the velocity field
across Γa and Γb, we have the interface conditions

u+=u−,
1

ρ
∂+z u=∂−z u on Γa,

u+=u−, ∂+z u=
1

ρ
∂−z u on Γb, (2.4)

where the superscripts + and − denote the function values or partial derivatives taken
from above and from below the interfaces, respectively.

Figure 1: A schematic of the computational imaging problem. The biperiodic surface to be imaged is labeled
as Γ f . The superlens consists of a slab with its top surface denoted as Γa and its bottom surface as Γb. The
structure is illuminated by an incident wave from above, and measurements are taken at Γb.
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Given the normal incident field (2.3), the total field u is biperiodic in x,y with the
same periods as f . Let usc = u−uin denote the scattered field. Imposing the upward
propagating radiation condition for usc leads to the Rayleigh expansion

usc(x,y,z)= ∑
n∈Z2

usc
n (b)e

i[αn·x+γn(z−b)], z≥b, (2.5)

where n=(n1,n2)∈Z
2, x=(x,y)∈R

2,

αn =

(

2πn1

Λ1
,
2πn2

Λ2

)

, γn=
√

ω2−|αn|2, Imγn>0, (2.6)

and usc
n (b) denotes the n-th Fourier coefficients of usc(x,b), i.e.

usc
n (b)=

1

Λ1Λ2

∫ Λ2

0

∫ Λ1

0
usc(x,b)e−iαn·xdxdy.

Henceforward, we consistently employ the subscript n to signify the n-th Fourier coef-
ficient of a biperiodic function with respect to the variable x. Note that the n-th term in
(2.5) is a propagating wave if |αn|<ω, and an evanescent wave if |αn|>ω. The evanes-
cent wave is exponentially decreasing in amplitude, causing low signal-to-noise ratio
when measured far from the surface. This can be understood as the physical origin of
diffraction limit encountered in traditional imaging techniques.

Applying ∂z to both sides of (2.5) at z=b, we obtain

∂+z usc=T(usc)+ on Γb, (2.7)

where the operator T is defined as

Tv= ∑
n∈Z2

iγnvneiαn·x

for any biperiodic function v(x). Straightforward calculation shows

∂+z uin =T(uin)++τ on Γb, (2.8)

where
τ=−2iωe−iωb. (2.9)

Adding (2.7) to (2.8) and noting the continuity condition for u, we obtain

∂+z u=Tu+τ on Γb.

Combining this and the interface condition (2.4), we obtain the following boundary con-
dition for the total field:

1

ρ
∂−z u=Tu+τ on Γb.
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We consolidate the derived differential equations, boundary conditions, and interface
conditions to establish a boundary-interface value problem (BIVP) in Ω∪Ω f























































1

ρ
∂zu=Tu+τ on Γb,
[

∆+
(ρ

κ

)

ω2
]

u=0 in Ω,

u+=u−,
1

ρ
∂+z u=∂−z u on Γa,

(∆+ω2)u=0 in Ω f ,

u=0 on Γ f .

(2.10)

Given the surface profile f and the incident field uin, the forward scattering problem is to
determine the total field u for z> f (x,y).

Inverse scattering problem: To reconstruct the surface profile f (x,y) given the incident
field uin and the noisy measurement of total field u on Γb.

3 Transformed field expansion

The resolution of the inverse scattering problem inherently requires a thorough exami-
nation of the associated forward problem. As an initial step towards this objective, we
derive a series solution for the BIVP as defined in (2.10), employing a transformed field
expansion methodology.

3.1 Coordinate transformation

First, we make the following transformation of coordinates:

x̃= x, ỹ=y, z̃= z, (x,y,z)∈ Ω̄,

x̃= x, ỹ=y, z̃= a

[

z− f (x,y)

a− f (x,y)

]

, (x,y,z)∈ Ω̄ f .

This transformation maps the domain Ω f to Ω0 : 0< z̃ < a, and the boundary Γ f to the
flat surface Γ0 : z=0. The domain Ω, the boundary Γb, and the interface Γa remain fixed
during this transformation.

We introduce the transformed function ũ(x̃,ỹ, z̃) = u(x,y,z), where (x,y,z) ∈ Ω∪Ω f .
After a meticulous yet straightforward calculation, we deduce from (2.10) that ũ(x̃,ỹ, z̃),
upon omitting the tildes from all variables, satisfies the equation

(

c1∂xx+c1∂yy+c2∂zz−c3∂xz−c4∂yz−c5∂z+c1ω2
)

u=0 in Ω0, (3.1)
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where the coefficient functions ci are given by

c1=(a− f )2,

c2= a2+(a−z)2|∇ f |2,

c3=2(a−z)(a− f ) fx ,

c4=2(a−z)(a− f ) fy ,

c5=(a−z)[2|∇ f |2+(a− f )∆ f ].

Furthermore, the interface condition in (2.10) is transformed to

u+=u−,
1

ρ

(

1− f

a

)

∂+z u=∂−z u on Γa.

The remaining equations and boundary conditions specified in (2.10) are invariant under
the aforementioned transformation, retaining their original forms.

3.2 Asymptotic power series expansion

Under the small-amplitude assumption (2.2), we utilize either physical intuition or the
transformed equation (3.1) to express the total field u into the asymptotic power series
expansion

u(x,y,z)=
∞

∑
k=0

εku(k)(x,y,z). (3.2)

Substituting (3.2) into (3.1) and incorporating (2.2) into the expressions for ci, followed
by rearranging terms based on the powers of ε, yields the recursive system of equations

(∆+ω2)u(k)=v(k) in Ω0,

where v(0)=0 and

v(1)= a−1
[

2g(∂xx+∂yy)+2(a−z)(gx∂xz+gy∂yz)+(a−z)∆g∂z+2ω2g
]

u(0). (3.3)

While the explicit forms for v(k) with k>2 can be derived, they are deliberately omitted
for the sake of brevity, as they are not relevant to the subsequent analysis.

Subsequently, by substituting (2.2) and (3.2) into the remaining equations in (2.10),
we derive the following BIVP for u(0):



















































1

ρ
∂zu(0)=Tu(0)+τ on Γb,
[

∆+
(ρ

κ

)

ω2
]

u(0)=0 in Ω,

[u(0)]+=[u(0)]−,
1

ρ
∂+z u(0)=∂−z u(0) on Γa,

(∆+ω2)u(0)=0 in Ω0,

u(0)=0 on Γ0,

(3.4)
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and the following BIVP for u(1):






















































1

ρ
∂zu(1)=Tu(1) on Γb,
[

∆+
(ρ

κ

)

ω2
]

u(1)=0 in Ω,

[u(1)]+=[u(1)]−,
1

ρ
∂+z u(1)=∂−z u(1)+

g

ρa
∂+z u(0) on Γa,

(∆+ω2)u(1)=v(1) in Ω0,

u(1)=0 on Γ0.

(3.5)

3.3 Closed-form solutions

Since (3.4) consists of equations and boundary-interface conditions with constant coeffi-
cients in a rectangular domain, closed-form solutions become attainable. Applying the

Fourier transform to (3.4) in x yields the following one-dimensional BIVP for u
(0)
n (z):















































1

ρ
∂zu

(0)
n =(iγn)u

(0)
n +τn, z=b,

(

∂zz+η2
n

)

u
(0)
n =0, a< z<b,

[

u
(0)
n

]+
=
[

u
(0)
n

]−
,

1

ρ
∂+z u

(0)
n =∂−z u

(0)
n , z= a,

(

∂zz+γ2
n

)

u
(0)
n =0, 0< z< a,

u
(0)
n =0, z=0,

(3.6)

where

ηn =

√

(ρ

κ

)

ω2−|αn|2, Imηn>0.

We retain the symbol ∂ for ordinary differentiation to maintain straightforward notations.
Clearly, the general solution of (3.6) can be written as

u
(0)
n (z)=







A
(0)
n eiηnz+B

(0)
n e−iηnz, a< z<b,

C
(0)
n eiγnz+D

(0)
n e−iγnz, 0< z< a

(3.7)

with undetermined coefficients A
(0)
n , B

(0)
n C

(0)
n , D

(0)
n . Applying the boundary and interface

conditions in (3.6) yields the linear system of equations

Mn













A
(0)
n

B
(0)
n

C
(0)
n

D
(0)
n













=









τn

0
0
0









, (3.8)
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where

Mn =















iψneiηnb −iφne−iηnb 0 0

eiηna e−iηna −eiγna −e−iγna

i

ρ
ηneiηna − i

ρ
ηne−iηna −iγneiγna iγne−iγna

0 0 1 1















, (3.9)

and φn =ηn/ρ+γn,ψn=ηn/ρ−γn are introduced to simplify notations.

Direct calculation shows

Σn =det(Mn)= e−iγna
(

e−iηnhφ2
n−eiηnhψ2

n

)

+eiγna
(

eiηnh−e−iηnh
)

φnψn, (3.10)

where h=b−a denotes the thickness of the superlens. Applying the Cramer’s rule to (3.8)
yields the solutions

A
(0)
n =

ie−iηn aτn

Σn

(

ψne−iγna−φneiγna
)

,

B
(0)
n =

ieiηn aτn

Σn

(

φne−iγna−ψneiγna
)

,

C
(0)
n =−2iηnτn

ρΣn
,

D
(0)
n =−C

(0)
n .

(3.11)

Given that τ is a constant, we can immediately deduce that τ0 = τ and τn = 0 for n 6= 0.

Consequently, the coefficients A
(0)
n , B

(0)
n ,C

(0)
n , and D

(0)
n are all zero when n 6=0. It follows

from (3.7) that the zeroth order solution is given by

u(0)=







A
(0)
0 eiη0z+B

(0)
0 e−iη0z, a< z<b,

2iC
(0)
0 sin(γ0z), 0< z< a.

(3.12)

Upon applying the Fourier transform to (3.5) and recognizing that u(0) is solely a func-

tion of z, we derive the one-dimensional BIVP for u
(1)
n (z)



















































1

ρ
∂zu

(1)
n =(iγn)u

(1)
n , z=b,

(

∂zz+η2
n

)

u
(1)
n =0, a< z<b,

[

u
(1)
n

]+
=
[

u
(1)
n

]−
,

1

ρ
∂+z u

(1)
n =∂−z u

(1)
n +

∂+z u(0)

ρa
gn, z= a,

(

∂zz+γ2
n

)

u
(1)
n =v

(1)
n , 0< z< a,

u
(1)
n =0, z=0,

(3.13)
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By variation of parameters, we write the general solution of (3.13) as

u
(1)
n (z)=







A
(1)
n eiηnz+B

(1)
n e−iηnz, a< z<b,

C
(1)
n eiγnz+D

(1)
n e−iγnz+wn(z), 0< z< a,

(3.14)

where A
(1)
n , B

(1)
n ,C

(1)
n , D

(1)
n are undetermined coefficients, and

wn(z)=γ−1
n

∫ z

0
sin[γn(z−z′)]v(1)n (z′)dz′ , γn 6=0. (3.15)

Substituting (3.14) into the boundary and interface conditions in (3.13) leads to the fol-
lowing linear system:

Mn















A
(1)
n

B
(1)
n

C
(1)
n

D
(1)
n















=















0
wn(a)

w′
n(a)+

∂+z u(0)(a)

ρa
gn

0















,

where Mn is given by (3.9). Solving the above system by the Cramer’s rule, we obtain

A
(1)
n =

2φne−iηnb

Σn

[

γncos(γna)wn(a)−sin(γna)

(

w′
n(a)+

∂+z u(0)(a)

ρa
gn

)]

. (3.16)

From (3.15), we have

wn(a)=
1

γn

∫ a

0
sin[γn(a−z)]v

(1)
n (z)dz,

w′
n(a)=

∫ a

0
cos[γn(a−z)]v

(1)
n (z)dz.

Upon substituting the above formulae into (3.16) and conducting a series of algebraic
simplifications, we arrive at the following expression:

A
(1)
n =−2φne−iηnb

Σn

[

∫ a

0
sin(γnz)v

(1)
n (z)dz+sin(γna)

∂+z u(0)(a)

ρa
gn

]

. (3.17)

To determine v
(1)
n , we substitute (3.12) into (3.3) and apply the Fourier transform,

yielding

v
(1)
n (z)=

2i

a
C
(0)
0 γ0

[

2γ0sin(γ0z)−|αn|2(a−z)cos(γ0z)
]

gn, 0< z< a.
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Upon a direct calculation, we find

∫ a

0
sin(γnz)sin(γ0z)dz=

1

2

{

sin[(γn−γ0)a]

γn−γ0
− sin[(γn+γ0)a]

γn+γ0

}

,

∫ a

0
sin(γnz)(a−z)cos(γ0z)dz=

aγn

γ2
n−γ2

0

− 1

2

{

sin[(γn+γ0)a]

(γn+γ0)2
+

sin[(γn−γ0)a]

(γn−γ0)2

}

.

Combining these results and noting that |αn|2=γ2
0−γ2

n, we deduce

∫ a

0
sin(γnz)v

(1)
n (z)dz=

2i

a
C
(0)
0 γ0[aγn−sin(γna)cos(γ0a)]gn .

Subsequently, from (3.12) and the interface condition in (3.4), we find

∂+z u(0)(a)=ρ∂−z u(0)(a)=2iρC
(0)
0 γ0cos(γ0a).

Inserting the previous two expressions in (3.17), we obtain

A
(1)
n =− 4i

Σn

C
(0)
0 γ0γnφne−iηnbgn. (3.18)

Following analogous steps, we find

B
(1)
n =− 4i

Σn

C
(0)
0 γ0γnψneiηnbgn. (3.19)

The coefficients C
(1)
n and D

(1)
n can also be determined, but they are not needed in the

sequel and are therefore omitted.
Substituting (3.18) and (3.19) into (3.14), and evaluating the expression at z = b, we

derive

u
(1)
n (b)=− 8i

ρΣn

C
(0)
0 γ0γnηngn.

Finally, incorporating the expression of C
(0)
0 from (3.11), we arrive at a pivotal identify of

this paper

gn = snu
(1)
n (b), (3.20)

where

sn =− ρ2Σ0Σn

16τγ0η0γnηn

(3.21)

serves as the scaling factors that links the Fourier coefficients of the surface profile g(x)
with the linear approximation of u(x,b).

Remark 3.1. Should the conditions γn =0 or ηn =0 arise for some n∈Z
2, indicating the

occurrence of resonance, the solutions will manifest in distinct forms. While these special
cases warrant separate treatment, they are omitted from the present study for the sake of
brevity and focus.
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4 Inverse scattering problem

Recalling the inverse scattering problem, the objective is to reconstruct f δ from the per-
turbed measurement data uδ(x,b) = u(x,b)+δ(x), where δ(x) represents additive mea-
surement noise. By substituting u(x,b) with the asymptotic expansion (3.2), we arrive at

uδ(x,b)=u(0)(x,b)+εu(1)(x,b)+r(x,b)+δ(x), (4.1)

where

r(x,b)=
∞

∑
k=2

εku(k)(x,y)

denotes the remainder term in the expansion. Combining (4.1) with (3.20), we deduce

fn = sn

[

uδ
n(b)−u

(0)
n (b)−rn(b)−δn

]

. (4.2)

It is noteworthy that u(0), explicitly provided by (3.12), is independent of f .
Upon dropping the error terms, we define

f δ
n = sn

[

uδ
n(b)−u

(0)
n (b)

]

, (4.3)

which serves as an approximate representation of fn. Finally, we reconstruct the surface
profile function f using the truncated Fourier series expansion

f δ,N(x)=Re ∑
‖n‖∞6N

f δ
neiαn·x, (4.4)

where ‖n‖∞ =max(n1,n2) and N signifies the cut-off frequency. It should be noted that
alternative norms for n may also be employed in this context. Combining (4.2)-(4.4), we
find that the total reconstruction error f δ,N− f can be decomposed as

f δ,N− f =E1+E2+E3,

where each component is defined as

E1=Re ∑
‖n‖∞6N

snrn(b)e
iαn ·x, E2=Re ∑

‖n‖∞6N

snδneiαn·x, E3= ∑
‖n‖∞>N

fneiαn·x.

It is worth noting the origins of each error term.

1. E1 emerges from dropping the higher order terms in the asymptotic expansion (3.2),
i.e. approximating the nonlinear problem with a linear one.

2. E2 is associated with the measurement noise δ(x).

3. E3 results from the truncation of the Fourier series representation of f , which de-
pends on the cut-off frequency N and the spectral properties of f .
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Next, we introduce a discrepancy principle to determine the cut-off frequency N, which
plays the role of a regularization parameter for the inverse problem. To this end, let uδ,N

denote the solution to the forward scattering problem corresponding to the surface pro-
file f δ,N .

Neglecting higher-order terms in the asymptotic expansion for uδ,N and employing

the approximation f δ,N
n ≈ f δ

n , we arrive at the expression

uδ,N(x,b)≈u(0)(x,b)+ ∑
‖n‖∞6N

s−1
n f δ

n eiαn·x

=u(0)(x,b)+ ∑
‖n‖∞6N

[

uδ
n(b)−u

(0)
n (b)

]

eiαn·x.

It follows that

uδ(x,b)−uδ,N(x,b)≈ ∑
‖n‖∞>N

[

uδ
n(b)−u

(0)
n (b)

]

eiαn·x=: Rδ,N,

where Rδ,N denotes an approximation of the residual.
We propose the following approximate discrepancy principle of Morozov for the cut-

off frequency N.

Discrepancy principle: For any given noise δ, select N as the smallest integer satisfying

‖Rδ,N‖2< c‖δ‖2, (4.5)

where c>0 is a prescribed constant.

It is noteworthy that ‖Rδ,N‖2 is non-increasing with respect to N. Consequently, for
a fixed constant c, a higher noise level ‖δ‖2 necessitates a smaller value of N. Given
that Rδ,N is an approximate, rather than exact, residual, it is possible that ‖Rδ,N‖2<‖δ‖2.
This permits the utilization of c61, a departure from the classical discrepancy principle
of Morozov [19]. We employ this approximate discrepancy principle in the numerical ex-
periments conducted in Section 5, and the outcomes are both satisfactory and consistent.

Rigorous theoretical examination of the proposed discrepancy principle, as well as
the formal establishment of the well-posedness for both the direct and inverse problems,
and the convergence and error analysis of the numerical scheme under consideration,
fall outside the focus of the present paper. Those topics, given their interconnected and
complex nature, are best addressed collectively in a dedicated theoretical study, which
we hope to report in a future paper.

Next, we investigate the numerical method in some special cases regarding the su-
perlens.

4.1 Without superlens

Consider the case when the slab is absent, i.e. ρ=κ=1. Then we have

ηn =γn, η0 =γ0=ω, Σn =4γ2
ne−iγnb, Σ0=4ω2e−iωb.
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Substituting the above results and (2.9) into (3.21), we derive a simplified expression for
the scaling factor

sn =
e−iγnb

2iω
, (4.6)

From the definition of γn in (2.6), we make the following distinctions.

1. If |αn|6ω, then γn ∈R, corresponding to propagating waves in the Rayleigh ex-
pansion (2.5) for the scattered wave. In this case, |sn|=1/(2ω) is constant in terms
of n. It follows from (3.20) that the reconstruction of the corresponding frequency
modes fn are equally stable for those values of n.

2. If |αn|>ω, then γn = i
√

|αn|2−ω2, corresponding to evanescent waves in (2.5). In
this case,

|sn|=
1

2ω
eb
√

|αn|2−ω2 → ∞

exponentially as ‖n‖→∞. Consequently, it is increasingly unstable to reconstruct
the higher frequency modes fn when the measurement data is contaminated by
noise with flat power spectral density across all frequencies (e.g. additive white
Gaussian noise, see the Appendix A).

Note that the number of n satisfying |αn|6 ω is finite and roughly proportional to ω.
Thus, the number of frequency modes of f amenable to stable reconstruction is propor-
tional to ω, which elucidates the diffraction limit inherent in traditional far-field imaging
methodologies.

4.2 With superlens

Next we consider the case where ρ,κ are both negative. First we consider the special case
when ρ=κ=−1, corresponding to the superlens proposed in [40]. Then we have

ηn =γn, η0=γ0=ω, Σn =−4γ2
ne−iγn(a−h), Σ0=−4ω2e−iω(a−h).

Substituting these results into (3.21), we derive

sn =
e2iωh

2iω
e−iγn(a−h). (4.7)

Taking the absolute value of sn, we find a−h in (4.7) plays the role of b in (4.6). Thus, we
may call a−h the “effective measuring distance” in this case. Physically speaking, a−h
is approximately the acoustic path length as the wave travels from Γ f to Γb, where a is
approximately the path length from Γ f to Γa, and −h is the acoustic path length from Γa

to Γb. For evanescent waves, this implies they decay exponentially from Γ f to Γa, and
subsequently grows exponentially from Γa to Γb. In essence, this observation underscores
the role of the superlens as an effective amplifier of evanescent waves.
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Let us take a=h, so that (4.7) reduces to

sn =
e2iωh

2iω
. (4.8)

Thus, |sn|=(2ω)−1 is constant with respect to n. Consequently, all the frequency modes
of f are equally amenable to stable reconstructions. In this context, we achieved unlim-
ited resolution within the realm of linear approximation. Notably, this outcome serves
to substantiate the findings originally presented in [40], albeit in the context of imaging
periodic surfaces. Alternatively, we can advance the argument that when a= h, it signi-
fies a scenario wherein the effective measuring distance reduces to zero. Additionally,
the condition a = h can be interpreted as inducing a zero effective measuring distance,
which suggests that no information pertaining to the surface is lost in the reconstruction
process.

In practical applications, achieving materials with precisely defined effective proper-
ties may pose significant challenges. Specifically, the effective density ρ and bulk modu-
lus κ may manifest non-zero imaginary components, attributable to diffusive scattering
losses within the composite metamaterial [28]. In our numerical experiments, we em-
ploy ρ=−1+iµ1 and κ=−1+iµ2, wherein µ1 and µ2 are small, positive constants. Under
these conditions, the expression (4.8) remains approximately valid, thereby leading us to
anticipate the persistence of resolution enhancement effects.

5 Numerical experiments

We conduct numerical experiments to investigate the effectiveness of the proposed recon-
struction formula and discrepancy principle. For simplicity, we fix Λ1=Λ2=1 throughout
the experiments. Let λ=2π/ω denote the wavelength in the free space and we fix λ=1.1.

The analysis in Section 4 shows that without the superlens, the scaling factor sn in-
creases exponentially when |αn|>ω. If Λ1 =Λ2 =1 and λ=1.1, this implies |n|>1/1.1.
Therefore, we can approximately conclude that only the zeroth frequency mode can be
stably recovered without the superlens, while modes higher than zero exceed the diffrac-
tion limit.

Remark 5.1. The proposed method presumes prior knowledge of the surface’s periodici-
ties Λ1,Λ2, an assumption that may not be applicable in practical contexts. To circumvent
this limitation, one could formulate an inverse problem where Λ1 and Λ2 are treated as
unknown variables to be ascertained. These parameters could be reconstructed either
independently or in conjunction with the surface’s profile.

5.1 Discretization and implementation

For a specified profile function f , we solve the forward scattering problem utilizing the
perfectly matched layer (PML) technique in conjunction with the finite element method



Y. Wang / CSIAM Trans. Appl. Math., 6 (2025), pp. 148-175 163

(FEM). In the implementation of the FEM solver, cubic Lagrange elements are employed.
Moreover, the mesh generator is configured such that the maximum element size is re-
stricted to λ/32 on the boundaries Γa and Γb, and λ/8 for other regions within the mesh.

The finite element method solution for the profile function f is subjected to inter-
polation to yield the total field u(xi,b) on a uniform rectangular grid xi in the domain
[0,1]2. Here, i = (i1,i2) and xi = (i1/I1,i2/I2) with 0 ≤ i1 < I1 and 0 ≤ i2 < I2, where I1

and I2 are positive integers. Subsequently, the field value undergoes a perturbation by
a noise component to synthesize measurement data. The characteristics of the noise are
application-dependent; in the realm of imaging sciences, additive white Gaussian noise
is frequently employed. The perturbed data is thus expressed as

uδ(xi,b)=u(xi,b)+δi,

where both the real and imaginary components of δi are independent of u(xi,b) and ad-
here to an independent and identically distributed Gaussian distribution with zero mean
and a standard deviation σ. To ensure reproducibility of the results, the seed for the
random number generator is fixed.

The signal-to-noise ratio (SNR) is defined in terms of the data energy, formulated as

SNR=
‖u(·,b)‖l2

‖δ‖l2

.

Finally, it is noteworthy that u
(0)
0 (b) = A

(0)
0 eiη0b+B

(0)
0 e−iη0b and u

(0)
n (b) = 0 when n 6= 0.

Utilizing these data, we compute f δ
0 from (4.3) and ultimately derive a discrete version of

the reconstructed profile function f δ,N in accordance with (4.4).

In general, the function u(x,b) is not band limited, so its Fourier coefficients cannot
be computed exactly from finitely many sample points, especially when it is perturbed
by noise. However, if the field is sufficiently smooth, then its Fourier coefficients de-
cays rapidly and the low-frequency modes uδ

n(b) can be accurately approximated by the
discrete Fourier transform (DFT)

Uδ
n=

1

I1 I2

I1−1

∑
i1=0

I2−1

∑
i2=0

e
−2πi(

n1i1
I1

+
n2i2

I2
)
uδ(xi,b).

Without loss of generality, we take I1= I2= I and refer to I as the sample rate. For more ac-
curate results, I should be as large as possible. Moreover, it follows from the Appendix A
that the DFT of δ(xi) follows i.i.d. Gaussian distribution with deviation inversely pro-
portional to I. Consequently, greater sample rate yields greater SNR for a given noise
distribution. On the other hand, I should be as small as possible for easier and faster mea-
surement in practical scenario. As a guiding principle, the Petersen-Middleton theorem
dictates that I>2N if accurate reconstructions are seeked up to the cut-off frequency N.
In the sequel, we fix I=99 in all numerical experiments.
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5.2 Surface profiles

We carry out detailed experimentation on three distinct surface profiles, each progres-
sively more challenging than the last. The first profile function is given by g(x)= p(x)+
p(y), where

p(t)=
1

4
[0.5+sin(2πt)+cos(4πt)+sin(6πt)].

A pseudocolor plot of the profile function in [0,1]2 is shown in Fig. 2(a). Note that this
profile function is smooth and consists of nonzero Fourier modes gn with ‖n‖∞63, which
is seen from the pseudocolor plot of |gn| in Fig. 2(d).

The second profile is the periodic extension of q(8x−4,8y−4),(x,y)∈ [0,1]2 , where

q(s,t)=0.3(1−s)2e−s2−(t+1)2−(0.2s−s3−t5)e−s2−t2−0.03e−(s+1)2−t2
.

This profile function is better illustrated by a surface plot, which is shown in Fig. 2(b).
This profile function is numerically smooth but apparently consists of infinitely many
Fourier modes. So the spectral cut-off error never vanishes but decreases fast as
‖n‖∞ →∞, which is seen from the pseudocolor plot of |gn| in Fig. 2(e).

The third profile is non-smooth, piecewise constant function created from the gray-
scale image as shown in Fig. 2(c). We set g(x,y) to be the periodic extension of the indi-
cator function for the image. The points of jump discontinuities are connected by lateral

(a) (b) (c)

(d) (e) (f)

Figure 2: Ground truth of surface profiles and their Fourier coefficients. (a)-(c): pseudocolor plot of the three
profile functions; (d)-(f): pseudocolor plots of |gn| for the profile functions g in (a)-(c).
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surfaces to create the final surface profile. Although the derivation of our method as-
sumes g to be twice differentiable at least, we still expect the method to work even in this
case in view of the Fourier approximation theory. On the other hand, we anticipate more
challenges in achieving accurate reconstruction in view of the Gibbs phenomenon and
the slower decay rate of the Fourier modes comparing with the previous two functions,
which is seen from the pseudocolor plot of |gn| in Fig. 2(f).

5.3 Experiment 1

We first consider the profile function shown in Fig. 2(a). With the parameter values given
in Table 1 (row 1), we compute the reconstructions using cut-off frequencies 06 N 6 8
and plot the results in Fig. 3. We observe the Fourier modes of the surface profile is
cumulatively reconstructed from low to high frequencies as N increases. For this profile,
N = 3 is sufficient but the reconstructions stays stable for several values greater than 3,
demonstrating the robustness with respect to N. Certainly, increasing N further would
eventually leads to deteriorated reconstructions.

Next we increase the noise level by setting σ = 0.01, leading to a signal-to-noise ra-
tio SNR=5.5. The results are shown in Fig. 4. Observe the reconstructions exhibit minor
difference with those in Fig. 3 for small N even with the much greater noise level, demon-
strating high tolerance of the method with respect to measurement noise. On the other
hand, the reconstructions deteriorate quicker than those in Fig. 3 as N increases further

Table 1: Parameter values used in Experiment 1.

ε a h ρ κ σ SNR

Fig. 3 0.001 0.1 0.1 −1+0.01i −1+0.01i 0.005 10.9

Fig. 4 0.001 0.1 0.1 −1+0.01i −1+0.01i 0.01 5.5

Fig. 5 0.001 0.1 0.1 −1+0.01i −1+0.01i 0.02 2.7

Figure 3: Pseudocolor plots of the reconstructions for the first surface profile with parameter values given in
Table 1 (row 1) and different cut-off frequencies N.
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Figure 4: Pseudocolor plots of the reconstructions for the first surface profile with parameter values given in
Table 1 (row 2) and different cut-off frequencies N.

Figure 5: Pseudocolor plots of the reconstructions for the first surface profile with parameter values given in
Table 1 (row 3) and different cut-off frequencies N.

due to the greater noise level. As comparison, Fig. 5 shows the results with σ=0.02 and
SNR=2.7.

We may leverage the discrepancy principle (4.5) to determine a suitable cut-off fre-
quency N. Letting c= 1, we plot the residual ‖Rδ,N‖2 against N and the absolute noise
level ‖δ‖2 for the previous experiments in Fig. 6 (row 1). According to the discrepancy
principle, we choose the smallest N such that ‖Rδ,N‖2 6 ‖δ‖2, leading to N = 3 for all
three cases. This choice is optimal for this experiment as seen from the relative error
‖ f − f δ,N‖2/‖ f‖2 of the reconstructions depicted in Fig. 6 (row 2). In terms of the wave-
length λ=1.1, we obtain subwavelength resolutions even with very low signal-to-noise
ratio using the proposed discrepancy principle.

Fig. 7 presents reconstructions conducted with the parameter values specified in Ta-
ble 1 (row 1), but with different values of SNR and the corresponding cut-off frequency N
determined from the discrepancy principle. Remarkably, the method exhibits robustness
over a substantial SNR span, ranging from as low as 0.55 to as high as 44.
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(a) (b) (c) (d)

Figure 6: (a)-(c): residual ‖Rδ,N‖2 (solid blue line) and absolute noise level ‖δ‖2 (dashed red line) with

parameter values given in Table 1; (d): relative error ‖ f − f δ,N‖2/‖ f ‖2 with parameters in (a)-(c).

Figure 7: Pseudocolor plots of the reconstructions for the first surface profile using parameter values given in
Table 1 (row 1), but with different values of SNR and the corresponding cut-off frequency N determined from
the discrepancy principle.

5.4 Experiment 2

We next consider the surface profile shown in Fig. 2(b). With the parameter values given
in Table 2 (row 1), we compute the reconstructions using cut-off frequencies 06 N 6 8
and plot the results in Fig. 8. We again observe the Fourier modes of the surface profile is
cumulatively reconstructed from low to high frequencies as N increases at the beginning
and it is increasingly unstable to reconstruct higher frequency modes.

According to (4.6), the reconstructions of all frequency modes are equally stable if
ρ = κ =−1. Thus, we expect a better stability for higher frequency modes as ρ,κ ap-

Table 2: Parameter values used in Experiment 2.

ε a h ρ κ σ SNR

Fig. 8 0.001 0.1 0.1 −1+0.01i −1+0.01i 0.005 9.4

Fig. 9 0.001 0.1 0.1 −1+0.001i −1+0.001i 0.0009 9.3

Fig. 11 0.001 0.1 0.1 1 1 1 9.3
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Figure 8: Surface plots of the reconstructions for the first surface profile with parameter values given in Ta-
ble 2 (row 1) and different cut-off frequencies N.

Figure 9: Surface plots of the reconstructions for the first surface profile with parameter values given in Ta-
ble 2 (row 2) and different cut-off frequencies N.

proaches their ideal values. With ρ= κ=−1+0.001i and roughly equal SNR, we obtain
the results in Fig. 9, which demonstrate better stability for higher frequency modes com-
pared with the results with ρ=κ=−1+0.01i.

Fig. 10 presents reconstructions conducted with the parameter values specified in Ta-
ble 2 (row 2), but with different values of SNR and the corresponding cut-off frequency N
determined from the discrepancy principle. Again, the method exhibits robustness and
over a wide SNR span, ranging from as low as 0.84 to as high as 21.

Lastly, we show in Fig. 11 the reconstructions when the slab is absent (by setting
ρ= κ = 1) and with SNR= 9.3. Clearly, no frequency modes except N = 0 can be stably
reconstructed.

In Fig. 12, we plot log10 |sn| against n with different values of ρ,κ, where other param-
eters are given in Table 2 (row 2). With ρ= κ =−1, |sn| is a constant, indicating infinite
resolution. If ρ,κ deviates slightly from −1, then |sn| stays roughly constant and even-
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tually increases exponentially as ‖n‖ increases, indicating increased instability for large
frequencies. The farther away ρ,κ deviates from −1, the earlier |sn| starts to increase.
If ρ = κ = 1, then |sn| increases exponentially immediately from n = 0. Note that sn is
independent of g, thus the above observations apply to all surface profiles.

Figure 10: Pseudocolor plots of the reconstructions for the second surface profile using parameter values given
in Table 2 (row 2), but with different values of SNR and the corresponding cut-off frequency N determined
from the discrepancy principle.

Figure 11: Surface plots of the reconstructions for the first surface profile with parameter values given in
Table 2 (row 3) and different cut-off frequencies N.

Figure 12: Plots of log10 |sn| against n with different values of ρ,κ.
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5.5 Experiment 3

Finally, we consider the third surface profile as shown in Fig. 2(c).
With the parameter values given in Table 3 (row 1), we obtain the reconstructions in

Fig. 13. From visual inspection, the best results are approximately obtained with N =
7,8,9. Next, we increase the deformation parameter ε from 0.001 to 0.01 while keeping
the SNR approximately fixed. The results are shown in Fig. 14, where the outline of

Figure 13: Surface plots of the reconstructions for the first surface profile with parameter values given in
Table 3 (row 1) and different cut-off frequencies N.

Figure 14: Surface plots of the reconstructions for the first surface profile with parameter values given in
Table 3 (row 2) and different cut-off frequencies N.
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the profile are as clear as those in Fig. 13 at N = 7,8,9. However, the amplitude exhibit
greater error as seen from the range in the colorbars, possibly due to the increasing of the
linearization error as ε increases.

Fig. 15 presents reconstructions conducted with the parameter values specified in Ta-
ble 3 (row 1), but with different values of SNR and the corresponding cut-off frequency N
determined from the discrepancy principle with c=1.3. Criterion to determine the opti-
mal value of c in the discrepancy principle is left for a future study.

Table 3: Parameter values used in Experiment 3.

ε a h ρ κ σ SNR

Fig. 13 0.001 0.1 0.1 −1+0.001i −1+0.001i 0.0025 10.6

Fig. 14 0.01 0.1 0.1 −1+0.001i −1+0.001i 0.031 10.6

Figure 15: Pseudocolor plots of the reconstructions for the second surface profile using parameter values given
in Table 3 (row 1), but with different values of SNR and the corresponding cut-off frequency N determined
from the discrepancy principle.

6 Conclusion

We propose a model and numerical method for acoustic imaging of biperiodic surface
with a slab of negative index material. It is formulated as an inverse scattering problem
with measurement atop the slab from a single incident field. We first derive a boundary-
interface value problem (BIVP) for the forward scattering problem and transform it to
a rectangular domain through change of variables. Given a low-profile assumption on
the surface, we take an asymptotic expansion of the wave field and derive a recursive
system of BIVPs, which is solved to closed-form for the zeroth and first order terms. By
dropping higher order terms in the expansion, we deduce a simple relation between the
Fourier coefficients of the wave field and those of the surface profile, leading to a recon-
struction formula for the inverse scattering problem. Preliminary analysis of the method
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shows an infinite resolution may be approximately achieved if the effective density and
bulk modulus are both approximately −1 and the thickness of the prism is no less than
the height of its lower surface. Numerical experiments for both smooth and nonsmooth
surface profiles yield reconstructions with resolutions significantly beyond the diffrac-
tion limit, which can only be achieved by a much shorter measuring distance without the
prism.

There are several open problems and extensions for the present study. The well-
posedness of the forward problem is largely open and deserve a rigorous mathemati-
cal study. The uniqueness and stability of the inverse scattering problem is also worth
study. Upon the establishment of those results, one may conduct convergence and error
analysis of the proposed numerical scheme. If the low-profile assumption does not hold,
then one may resolve to other numerical methods such as iterative or direct methods and
still obtain significantly enhanced reconstructions. One can also take into consideration
of the composite nature of the negative index metamaterial and conduct more realistic
numerical or physical experiments. Finally, one can extend the method to electromag-
netic or elastic waves, and other geometrical settings such as inverse obstacle or medium
scattering problems.

Appendix A

In this appendix, we study the DFT of white Gaussian noise. Denote by gσ the real-valued
Gaussian distribution with mean zero and standard deviation σ. Suppose ui =vi+iwi is
a complex-valued random variable such that both vi and wi follow the distribution gσ

and mutually independent for i=(i1,i2), 06 i16 I1−1,06 i26 I2−1. Let n=(n1,n2), and

Un =
1

I1 I2

I1−1

∑
i1=0

I2−1

∑
i2=0

ηniui

denote the DFT of ui, where

ηni = e
−2πi(

n1i1
I1

+
n2i2

I2
)
=λni+iµni.

Since |ηni|=1, we see

Reηniui=λnivi−µniwi,

Imηniui=λniwi+µnivi

both follow the distribution gσ. Moreover, one can verify

Cov(Reηniui,Imηniui)

=E[(λnivi−µniwi)(λniwi+µnivi)]

=
(

λ2
ni−µ2

ni

)

E(vi)E(wi)+λniµni

[

E
(

v2
i

)

−E
(

w2
i

)]

=0.

Thus, Reηniui and Imηniui are mutually independent for each i and for fixed n. It follows
that ReUn and ImUn are independent and both follow the distribution gσ/

√
I1 I2

.



Y. Wang / CSIAM Trans. Appl. Math., 6 (2025), pp. 148-175 173

Acknowledgments

Our work was supported in part by the Guangdong Provincial Key Laboratory IRADS
(Grant Nos. 2022B1212010006, R0400001-22).

References

[1] M. Ambati, N. Fang, C. Sun, and X. Zhang, Surface resonant states and superlensing in acoustic
metamaterials, Phys. Rev. B., 75(19):195447, 2007.

[2] H. Ammari, Uniqueness theorems for an inverse problem in a doubly periodic structure, Inverse
Probl., 11(4):823, 1995.

[3] H. Ammari, B. Fitzpatrick, H. Lee, S. Yu, and H. Zhang, Double-negative acoustic metamateri-
als, Quart. Appl. Math., 77(4):767–791, 2019.

[4] T. Arens and A. Kirsch, The factorization method in inverse scattering from periodic structures,
Inverse Probl., 19(5):1195, 2003.

[5] G. Bao, A uniqueness theorem for an inverse problem in periodic diffractive optics, Inverse Probl.,
10(2):335, 1994.

[6] G. Bao, T. Cui, and P. Li, Inverse diffraction grating of Maxwell’s equations in biperiodic structures,
Opt. Express, 22(4):4799–4816, 2014.

[7] G. Bao and P. Li, Near-field imaging of infinite rough surfaces, SIAM J. Appl. Math., 73(6):2162–
2187, 2013.

[8] G. Bao and P. Li, Convergence analysis in near-field imaging, Inverse Probl., 30(8):85008, 2014.
[9] G. Bao and P. Li, Near-field imaging of infinite rough surfaces in dielectric media, SIAM J. Imaging

Sci., 7(2):867–899, 2014.
[10] G. Bao, P. Li, and H. Wu, A computational inverse diffraction grating problem, J. Opt. Soc. Am. A,

29(4):394–399, 2012.
[11] G. Bao and Z. Zhou, An inverse problem for scattering by a doubly periodic structure, T. Am.

Math. Soc., 350(10):4089–4103, 1998.
[12] G. Bruckner, J. Cheng, and M. Yamamoto, An inverse problem in diffractive optics: Conditional

stability, Inverse Probl., 18(2):415, 2002.
[13] G. Bruckner and J. Elschner, A two-step algorithm for the reconstruction of perfectly reflecting

periodic profiles, Inverse Probl., 19(2):315, 2003.
[14] T. Brunet, A. Merlin, B. Mascaro, K. Zimny, J. Leng, O. Poncelet, C. Aristégui, and

O. Mondain-Monval, Soft 3D acoustic metamaterial with negative index, Nat. Mater., 14(4):384–
388, 2015.

[15] T. Cheng, P. Li, and Y. Wang, Near-field imaging of perfectly conducting grating surfaces, J. Opt.
Soc. Am. A, 30(12):2473–2481, 2013.
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