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Abstract. The maximum bound principle (MBP) is an important property for a large
class of semilinear parabolic equations. To propose MBP-preserving schemes with
high spatial accuracy, in the first part of this series, we developed a class of time
semidiscrete stochastic Runge-Kutta (SRK) methods for semilinear parabolic equa-
tions, and constructed the first- and second-order fully discrete MBP-preserving SRK
schemes. In this paper, to develop higher order fully discrete MBP-preserving SRK
schemes with spectral accuracy in space, we use the Sinc quadrature rule to approxi-
mate the conditional expectations in the time semidiscrete SRK methods and propose
a class of fully discrete MBP-preserving SRK schemes with up to fourth-order accu-
racy in time for semilinear equations. Based on the property of the Sinc quadrature
rule, we theoretically prove that the proposed fully discrete SRK schemes preserve the
MBP and can achieve an exponential order convergence rate in space. In addition, we
reveal that the conditional expectation with respect to the Bronwian motion in the time
semidiscrete SRK method is essentially equivalent to the exponential Laplacian oper-
ator under the periodic boundary condition. Ample numerical experiments are also
performed to demonstrate our theoretical results and to show the exponential order
convergence rate in space of the proposed schemes.
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1 Introduction

Consider the following initial-boundary-value problem of a semilinear parabolic partial
differential equation (PDE) in the backward form:
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σσ⊤ :∇2u+ f (u)=0, (t,x)∈ [0,T)×D,

u(t,·) is D-periodic, t∈ [0,T],

u(T,x)= ϕ(x), x∈D,

(1.1)

where u(t,x) denotes the unknown function, D=(0,a)d ⊂Rd (d= 1,2,3) is a hypercube
domain, f is a nonlinear operator, and the matrix σ∈Rd×d is defined as

σ=











σ1

σ2

. . .

σd











, σi 6=0, i=1,.. . ,d.

It is well known that the semilinear parabolic equation (1.1) possesses the MBP in
the sense that the absolute value of its solution is pointwise bounded for all time by
some specific constant under appropriate initial and/or boundary conditions [9]. Up to
now, great efforts have been made in developing MBP-preserving numerical methods
for equations like (1.1). For the temporal discretizations, one is referred to [8–15, 18–20,
22–24, 26, 27, 33, 36, 41] and references therein. As for the spatial discretizations, a partial
list of earlier works includes [2–6, 16, 17, 22, 30, 31, 37, 39, 40, 42]. Recently, the authors
in [7] studied the effect of noise on the MBP-preserving property and energy evolution
property of numerical methods for stochastic parabolic partial differential equation with
a logarithmic Flory-Huggins potential.

Since the spectral method can not be used to construct the MBP-preserving numerical
schemes for the equations like (1.1), to improve the efficiency of the long time simulations,
it is important and necessary to develop some MBP-preserving schemes for (1.1) with
high spatial accuracy.

In the first part of this series [35], we developed a first-order and a second-order SRK
schemes with high spatial accuracy based on the probabilistic representation of the solu-
tion of (1.1) via the backward stochastic differential equation (BSDE) [29,32]. The key idea
is to represent the solution of (1.1) as an integral equation via BSDE, which contains only
some conditional expectations with respect to a diffusion process but not any differen-
tial operator. By applying the classical Runge-Kutta method to this integral equation, we
developed a class of time semidiscrete MBP-preserving SRK methods up to fourth-order
for (1.1). Since the diffusion process is a Gaussian process, one can write the conditional
expectation as an integral with respect to a negative exponential function. Then we fur-
ther constructed the first- and second-order fully discrete MBP-preserving SRK schemes
by using the three-point Gauss-Hermite quadrature rule to approximate the integrals in
the time semidiscrete schemes. Assuming that ∆t is the temporal step size and σi = σ0

for i=1,.. . ,d, our error analysis shows that the spatial errors of the proposed schemes in
maximum norm are proportional to σ6

0 ∆t2 and thus can be neglected compared with the
temporal errors especially for the small values of σ0.


