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Abstract. The maximum bound principle (MBP) is an important property for a large
class of semilinear parabolic equations. To propose MBP-preserving schemes with
high spatial accuracy, in the first part of this series, we developed a class of time
semidiscrete stochastic Runge-Kutta (SRK) methods for semilinear parabolic equa-
tions, and constructed the first- and second-order fully discrete MBP-preserving SRK
schemes. In this paper, to develop higher order fully discrete MBP-preserving SRK
schemes with spectral accuracy in space, we use the Sinc quadrature rule to approxi-
mate the conditional expectations in the time semidiscrete SRK methods and propose
a class of fully discrete MBP-preserving SRK schemes with up to fourth-order accu-
racy in time for semilinear equations. Based on the property of the Sinc quadrature
rule, we theoretically prove that the proposed fully discrete SRK schemes preserve the
MBP and can achieve an exponential order convergence rate in space. In addition, we
reveal that the conditional expectation with respect to the Bronwian motion in the time
semidiscrete SRK method is essentially equivalent to the exponential Laplacian oper-
ator under the periodic boundary condition. Ample numerical experiments are also
performed to demonstrate our theoretical results and to show the exponential order
convergence rate in space of the proposed schemes.
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1 Introduction

Consider the following initial-boundary-value problem of a semilinear parabolic partial
differential equation (PDE) in the backward form:
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w200 V2t f(u)=0,  (tx)€[0,T)xD,

2
u(t,-) is D-periodic, te[0,T], (1.1)
u(T,x)=¢(x), x€D,

where u(t,x) denotes the unknown function, D = (0,a)? CR¥ (d=1,2,3) is a hypercube
domain, f is a nonlinear operator, and the matrix o € R¥*4 is defined as

01

%]
o= ) , 0;£0, i=1,...,d.

04

It is well known that the semilinear parabolic equation (1.1) possesses the MBP in
the sense that the absolute value of its solution is pointwise bounded for all time by
some specific constant under appropriate initial and/or boundary conditions [9]. Up to
now, great efforts have been made in developing MBP-preserving numerical methods
for equations like (1.1). For the temporal discretizations, one is referred to [8-15,18-20,
22-24,26,27,33,36,41] and references therein. As for the spatial discretizations, a partial
list of earlier works includes [2-6, 16,17, 22, 30, 31, 37, 39, 40, 42]. Recently, the authors
in [7] studied the effect of noise on the MBP-preserving property and energy evolution
property of numerical methods for stochastic parabolic partial differential equation with
a logarithmic Flory-Huggins potential.

Since the spectral method can not be used to construct the MBP-preserving numerical
schemes for the equations like (1.1), to improve the efficiency of the long time simulations,
it is important and necessary to develop some MBP-preserving schemes for (1.1) with
high spatial accuracy.

In the first part of this series [35], we developed a first-order and a second-order SRK
schemes with high spatial accuracy based on the probabilistic representation of the solu-
tion of (1.1) via the backward stochastic differential equation (BSDE) [29,32]. The key idea
is to represent the solution of (1.1) as an integral equation via BSDE, which contains only
some conditional expectations with respect to a diffusion process but not any differen-
tial operator. By applying the classical Runge-Kutta method to this integral equation, we
developed a class of time semidiscrete MBP-preserving SRK methods up to fourth-order
for (1.1). Since the diffusion process is a Gaussian process, one can write the conditional
expectation as an integral with respect to a negative exponential function. Then we fur-
ther constructed the first- and second-order fully discrete MBP-preserving SRK schemes
by using the three-point Gauss-Hermite quadrature rule to approximate the integrals in
the time semidiscrete schemes. Assuming that At is the temporal step size and ¢; =0y
fori=1,...,d, our error analysis shows that the spatial errors of the proposed schemes in
maximum norm are proportional to ¢§At* and thus can be neglected compared with the
temporal errors especially for the small values of oy.
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As shown in the first part [35], when using the Gauss-Hermite quadrature rule to
approximate the conditional expectations, we can only obtain the fully discrete MBP-
preserving SRK schemes with up to second-order accuracy in time. The main reason is
that we need to avoid using the interpolation when constructing the fully discrete MBP-
preserving schemes with high spatial accuracy, since only linear interpolation can pre-
serve the MBP. Because the Gauss-Hermite quadrature points are fixed and nonuniform,
we can only choose the three-point Gauss-Hermite quadrature rule to approximate the
conditional expectations in the first- and second-order time semidiscrete SRK methods
to construct the fully discrete MBP-preserving SRK schemes without using the interpo-
lation. To construct the fully discrete MBP-preserving SRK schemes with higher order
accuracy in time and exponential order accuracy in space, in this paper, we shall adopt
the Sinc quadrature rule [38] to approximate the conditional expectations in the time
semidiscrete SRK methods developed in [35]. Specifically, we propose a class of fully
discrete MBP-preserving SRK schemes with up to fourth-order accuracy in time and ex-
ponential order accuracy in space by using the Sinc quadrature rule to approximate con-
ditional expectations in the semidiscrete schemes. By combining with the property of the
Sinc quadrature rule, we prove the preservation of MBP of the proposed fully discrete
SRK schemes under some reasonable assumptions. We also rigourously establish their
error estimates, which show that the spatial errors of the schemes decrease in an expo-
nential speed with respect to the number of quadrature points M. In fact, if we set the
temporal and spatial step sizes At and Ax to satisfy 2Ax =0y+/At, the spatial errors of the
schemes are proportional to exp(—M?/8)/At. Besides, since all the coefficient matrices
of the proposed fully discrete schemes are circular, they can be implemented efficiently
via the fast fourier transform (FFT) technique. As far as we know, this is the first attempt
to design the fully discrete MBP-preserving schemes with exponential order convergence
rate in space for the semilinear parabolic equations.

Compared with the ones developed in the first part [35], the fully discrete MBP-
preserving SRK schemes proposed in this paper can achieve higher order convergence
rates in time and an exponential order convergence rate in space. Now we note the main
advantages of the proposed fully discrete SRK schemes.

The fully discrete SRK schemes possess high spatial accuracy as well as simple struc-
ture. Specifically, the spatial errors of the fully discrete schemes behave like the ones of
the spectral method with an exponential order convergence rate, whilst their coefficient
matrices are simple as the ones of the central difference method used in other classic
MBP-preserving schemes, which are symmetric and circular.

In addition, by analyzing their eigenvalues, we show that the conditional expecta-
tion with respect to the Brownian motion is essentially equivalent to the exponential
Laplacian operator under the periodic boundary condition in the sense that they have
exactly the same eigenvalues. In other words, we can provide an integral representation
for the exponential Laplacian differential operator. Moreover, by replacing the condi-
tional expectations in the time semidiscrete SRK schemes with the corresponding expo-
nential Laplacian operators, we obtain the time semidiscrete integrating factor Runge-
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Kutta (IFRK) schemes. Thus, the time semidiscrete SRK and IFRK schemes are essen-
tially equivalent to each other. However, the totally different ways of discretizations for
the two different types of operators lead to totally different fully discrete SRK and IFRK
schemes.

The rest of the paper is organized as follows. In Section 2, we briefly review the proba-
bilistic representation of the solution of (1.1) via BSDE and derive its MBP via the compar-
ison theorem of BSDE. Based on this representation, we introduce the time semidiscrete
SRK method developed in [35] and discuss its equivalence to the time semidiscrete IFRK
method in Section 3. In Section 4, by using the Sinc quadrature rule to approximate the
conditional expectations in the time semidiscrete SRK method, we propose a class of fully
discrete MBP-preserving SRK schemes, establish their error estimates and construct some
specific SRK schemes with up to fourth-order temporal accuracy. In Section 5, we carry
out various numerical experiments to verify the convergence and the MBP preservation
of the proposed schemes. Some concluding remarks are finally given in Section 6.

2 The probabilistic interpretation of semilinear PDE

As shown in [35], one of the key ingredients to develop the SRK scheme is the representa-
tion of the solution of (1.1) via BSDE. To give such representation, we let F= (F;)o<;<T be
the filtration generated by a d-dimensional Brownian motion W= (W; )o<;<r and consider
the BSDE defined on the filtered complete probability space (Q),F,FF,P) as below

T T
Ytzq’(XTH-/ f(Yr)dT_/ Z,dW,, 0<t<T, 2.1)
t t

where X; = Xo+0W; is a d-dimensional diffusion process with Xy € Fy being the initial
condition. A couple (Y;,Z;) is called an L2-adapted solution of the BSDE (2.1) if it is
Fi-adapted, square integrable and satisfies (2.1).

Now we show the relationship between the solutions of (1.1) and (2.1) in the following
lemma [32].

Lemma 2.1. Assume that the functions f and ¢ are Lipschitz continuous, then the BSDE (2.1)
admits a unique adapted solution (Y;,Z;) and the viscosity solution of the PDE (1.1) can be
represented as

u(t,x)=Y", (2.2)

where Y} is the value of Y; with X, starting from (t,x). Conversely, if u is the classical solution
of the PDE (1.1), then the adapted solution of the BSDE (2.1) can be represented as

Yt:M(t,Xt), Zf:(VucT)(t,Xt), (23)
which are the so called nonlinear Feynman-Kac formula.

The above lemma indicates that the MBP of the solution of (1.1) is a direct result of
the following comparison theorem for BSDE.
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Theorem 2.1 (Comparison Theorem, [21]). Let (Y}, Zi) for i =1,2 be the solutions of the
following BSDEs:

. . T . T .
Y=g+ [ f ()i [ Ziaw,, o<i<r,
t t

respectively, where the functions f':R — R are Lipschitz continuous and the terminal conditions
¢' € Fr are square integrable random variables. Then if almost surely

¢z fr =00,
we have that almost surely for any time t € [0,T], Y} > Y2.

Theorem 2.2 (Maximum Bound Principle, [35]). Assume that f and ¢ are Lipschitz continu-
ous and there exists a positive constant p such that

Then if —p < ¢(x) <p for any x € D, the classical solution u(t,x) of (1.1) satisfies

—o<u(tx)<p, VY(tx)e€[0,T]xD.

Remark 2.1. We point out that under the monotonicity assumption on f, the Lipschitz
condition on f in Lemma 2.1 can be weakened to the polynomial growth [1] and to an ar-
bitrary growth [28]. On the other hand, when f and ¢ are smooth enough, the viscosity
solution 1 in Lemma 2.1 becomes the classical solution. In fact, if f€C?™* and e} T2
foran w e (0,1), we have [43]

ueC A k=0,12,...,

where C} is the set of continuous differential functions ¢(x) with uniformly bounded
partial derivatives up to the I-th order and Cé*"" is the set of functions in Clb whose [-th
order derivative is Holder continuous with index «.

Remark 2.2. The condition f(p) = f(—p) =0 in Theorem 2.2 is satisfied by many semilin-
ear parabolic equations such as the Allen-Cahn equation, where f(u) usually takes the
following two forms:

3 Ginzburg-Landau potential,

u—u,
f(u){e 1—u . . (2.4)
> In T +0.u, Flory-Huggins potential.

Thus, it is obvious that p =1 for the Ginzburg-Landau potential. As for the Flory-
Huggins potential, we take 6§ =0.8 and 6, = 1.6 to obtain p~0.9575.
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3 The time semidiscrete SRK schemes

In this section, we recall the time semidiscrete SRK method for solving (1.1) proposed
in [35] and discuss its relationship with the integrating factor Runge-Kutta method. To
this end, we introduce the following uniform time partition:

t,=nAt, n=0,1,...,N;,

where At = T/N; with N; being a given positive integer. For a positive integer s, let
{ai]-, i,j=0,...,s} and {c;,i=0,...,s} be real numbers satisfying a;;=0fori<jand

O=co<--<c=1,

i1 3.1
Zﬂl’j:Cl‘, iIO,...,S. ( )
j=0

Then we define the s intermediate times in [t,,,t,.1] as
Ho=t, 1 —ciAt, i=0,...,s,

and thus t, =t <--- St?l:tnﬂ.

3.1 The time semidiscrete schemes
To develop the time semidiscrete SRK scheme, for n=0,...,N;—1, we write (2.1) as

tnt1

tpny1
Yo=Y, + [ f(x)dr— / Z,dW,, 0<t<t,.,. (3.2)
t t

Then by inserting the formula (2.3) into (3.2), we obtain

u(t, X)) =u(tysr,Xp )+ :”“ Flu(r,X,))dr— /t tM(Vua)(r,Xr)dWr, (3.3)

where u is the classical solution of (1.1). Let M; be the c-algebra generated by (X;)o<,<;
and take the conditional expectation [E;*[-] =IE[-|M;] on both sides of the Eq. (3.3), and
we have the following integral equation:

w(t,Xe) = [u(tyy1, X))+ /t t"“lEfff [f (u(r,X,))]dr. (3.4)

Thus, by taking t =t} in (3.4), we deduce the following reference equations:

-1 x, , |
. ﬂij]Et;"[f(ﬁ(tL,Xt{l))], i=0,...,s—1, (3.5

i X
u (tn/XtL) = lEt; ! [u (tn+1/th+1 )] +At
j=0



182 Y. Sun and W. Zhao / CSIAM Trans. Appl. Math., 6 (2025), pp. 176-206

s—1 )
u(ty, Xi,) :Eirn [u(tnﬂ,xml)]+Atzasiu§j§m [f (@t X ) )] 4R, (3.6)
i=0

1

where L‘t(tg,th) =u(ty41,Xt,.,) fori=0and R, is the local truncation error.

Let u,(x) and ne (x) be the approximations for the solution u(t,x) of (1.1) at times t,
and t;,, respectively. Then we take X, =xin (3.5) and (3.6) to get explicit time semidiscrete

s-stage SRK scheme for solving (1.1) in Butcher form

n+1)

) (%) =1 (x),

. i—1 ,
M,(ql) (x) ZIE;; Upt1 (thﬂ) —|—At2aijf<u£l]) (thq)):| , 1= 1,. .,5,
j=0

By using the conditional expectation property, we derive its Shu-Osher form [35]

ul (x) =t 11 (x),

) i1 . )
u,(f)(x):ZlEf; [zxiju,(q]) (Xy;)+Aff5iff(“v(1])(xtg)>]' i=1,...5
i=0

1 (x) =ul (x),
where the coefficients {a;;} and {;;} satisfy a;; >0 for i,j=1,2,...,s and
i1 i1
ZlXij:]., .Bij:aij_ Z ocikakj, i:]-,...,S.
j=0 k=j+1
Moreover, for a measurable function g:IR? — R, it holds that
Ef[g(X)]=E[g(X;")], 0<t<r<T,

where
X =x+0(W, —W;). (3.7)

Now we get the time semidiscrete s-stage SRK scheme for solving (1.1) as

up (x) =upi1(x),

i—1

o)=Ll (X7 i (4 ()] =1 O

]
j=0 "
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To show the MBP-preserving property and error estimate of the time semidiscrete
SRK scheme (3.8), we assume that the nonlinear term satisfies

dr§ >0 suchthat [E+7rf(C)|<p, Vie[-pp], Vre(0ry], (3.9)

Jry >0 suchthat [E—rf(8)|<p, Vie[—ppl, Vre(0r]. (3.10)

Besides, we assume that «;; is zero only if its corresponding f;; is zero. Then we have the
following MBP-preserving property [35].

Theorem 3.1. Assume that f satisfies (3.9) and (3.10), then if ||u,11| L~ < p, the solution u,
obtained from (3.8) satisfies ||uy, ||~ < p, provided that

At<Cr§, C= HEH,BI] (3.11)

when B;; are all nonnegative, or satisfies

At<Cmin{ry,ry}, C= mm (3.12)

Iﬁq!
whenever there is a negative p;.

Suppose the SRK scheme (3.8) is p-th order accurate with 1 <p <s and we have the
following error estimate [35].

Theorem 3.2. Let u, be the solution obtained from (3.8) with un,(x) = ¢(x). Assume that

ll@|| L < p and the exact solution u of (1.1) satisfies u € CEH’ZPH. Then under the conditions in
Theorem 3.1, we get

||I/l(tn,') _un ||L°° S C] (ECS(T_tn) - 1) (At)p/ n :OI‘ . ‘INtl
where C = ‘rrTax\ f'(&)| and the positive constant Cy is independent of At.

Remark 3.1. We take the Allen-Cahn equation for instance to illustrate the conditions
(3.9) and (3.10). For the Ginzburg-Landau potential, we have [20]

rg ==, ry=1, (3.13)

L 1-p _ 1
1’0 —m, 7’0 _GC——G (314)
Remark 3.2. Note that the sufficient conditions to preserve the MBP for the SRK schemes
in Theorem 3.1 are the same as the ones for the IFRK schemes proposed in [20]. Thus, one
can construct some specific time semidiscrete MBP-preserving SRK schemes with up to
fourth-order accuracy by choosing exactly the same coefficients of the MBP-preserving
IFRK schemes as given in [20].
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3.2 The relationship with the IFRK schemes

We first recall the time semidiscrete s-stage IFRK scheme for solving (1.1) proposed in [20]
as below

. i—1 . .
u,(f)(x):' e(cf*C/)Atﬁ[(x,-]-u,(q])(x)+Atﬁijf(u,(q])(x))], i=1,...s, (3.15)

where L is the linear operator in (1.1), that is,

1 t.o2_1 L 2o
L=z00":V?= EEUI 9%,
To reveal the relationship between the time semidiscrete SRK and IFRK schemes, for
a given function ¢:IRY — R, we define the following conditional expectation operators:

Ee,ouil8(0))=E} [g(X,) | =E[g(X}7)], o<j<iss.

Then the time semidiscrete s-stage SRK scheme (3.8) can be written as

u;(ai)(x):' IECi,cj,At[‘Xiju’glj)(x)+At13ijf(u£lj)(x))}’ i=1...5 (3.16)

By comparing (3.15) and (3.16), we observe that the s-stage SRK and IFRK schemes have
exactly the same form except that the exponential Laplacian operator e!%~)4£ in (3.15)
is replaced by the conditional expectation operator IEc,»,c/-,At in (3.16). Thus, one natural
question is:

 What is the relationship between the exponential Laplacian operator e( %)%~ and
the conditional expectation operator IEC[,C]., At?

By answering the above question, we can also reveal the relationship between the
time semidiscrete SRK and IFRK schemes. To answer the question, we analyze the eigen-
values of the two operators under the periodic boundary condition. Let k= (ky,...,k;)
with k; € Z for 1 <1 <d. By using the definition of £, it is easy to get the k-th eigenvalue
of e(c,-fc]-)Atﬁ as

2 d
—(ci—c]-)At2a”2 12 o?k?
-1

AL=e
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Now we derive the k-th eigenvalue of ]]NEC,.,C]., At- By using the fact that

X;‘:,x = :x:—i—(f(l/\/t{7 — Wt;)

and W; = (W},...,Wfl)T with th éielN(O,t), we deduce

E|e

221
= (27 5. it (x+o(W; =W, )k
]Eci,cj,At [el a* k} [ ‘ th tn

izTnU[(W]j —W]- )k1:|

d
:2
IEI%X‘,{ | |1E |:e th th
=1

d
(e e A2 ¥ 252
— i Zxk, (Cime)Ar 1§1U’ g

which indicates that the k-th eigenvalue of ]ECI.IC]., At 1S

2 d
—(cj—c;)AtEE" Y g2k2
Af=e At Bk

Since A§ = /\f, the operators elG—G)AL and ]Eci,c/-,At have the same eigenvalues. There-
fore, we conclude that they are two different representations for the same one linear op-
erator, which answers the above question. Moreover, this answer to the above question
reveals that the time semidiscrete SRK and IFRK schemes are essentially equivalent.

Nevertheless, the discretizations for the two different operators will lead to totally
different fully discrete SRK and IFRK schemes as shown in the next section. The main
reason is that e(~%)£ s a differential operator while IECZ.,C].IM is an integral operator, and

thus the discretizations for them are carried out in totally different ways.

4 The fully discrete SRK schemes

In this section, to construct the fully discrete SRK schemes, we adopt the Sinc quadrature
rule to approximate the expectations in the time semidiscrete scheme (3.8). To this end,
we introduce the following uniform mesh D}, of the domain D = (0,a)? as

Dh:{xk:kAx,lgki§Nx,i:1,...,d},

where k= (ki,...,k;) T is a multi-index and Ax=a/N, is the uniform mesh size with N,
being an even integer.

4.1 Sinc approximations

In this subsection, we recall some basic ideas of the Sinc approximations [25, 34].
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First, we define the Sinc function on the real line R by

sin(7tx)
sinc(x) = e >0,
1, x=0.

Moreover, we let B(h) denote the class of entire functions g such that on the real line
R,g€ LZ(IR), while in the entire complex plane C, g is of the following exponential type:

|g(z)| <Kexp (%) , VzeC,

where K and & are positive constants. Then for the functions in B(h), we have the follow-
ing series convergence results [25].
Theorem 4.1. If g€ B(h), then for all z€ C, we have

s@)= ¥ glhnsine ().

k=—o0

Moreover, if OZO; g(kh) converges, then for sufficiently small h, it holds that
k=—00

/Rg(x)dx:h Y g(kh).

k=—00

The above theorem indicates that we can define the following truncated Sinc approx-
imation for [ g(x)dx as

M
Tm(gh)=h ) g(kh). (4.1)
k=—M

Definition 4.1. We call Ty(g,h) defined in (4.1) the Sinc quadrature rule for the integral
Jr&(x)dx and let ny1(g,h) be the truncation error of Ta(g,h), that is,

(g )= [ ()dx—Tu(gh).

For the estimate of 17)1(g,%), we have the following theorem [38].

Theorem 4.2. Assume that g is bounded. Then for sufficiently small h, if there exists a positive
number g such that yo < MH?, it holds that

M?2h?
()] < Cryhexp (~ 5 ),

where C.y, ¢ is a positive constant depending only on 7y and ||g|| .
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4.2 The fully discrete schemes

To construct the fully discrete schemes, we use the Sinc quadrature rule to approximate
the expectations in the time semidiscrete scheme (3.8). For simplicity of presentation, we
assume that

ogi=0y, i=1,...,d

for a given positive constant op. To proceed, we let v: R? — R be some smooth function
and write the expectations in (3.8) in the general form

E[v(X/¥)], 0<t<r<T,

where
XE* = x+09 (W, —Wh).

For the case r=t, we get Xf’x =x and thus

E[o(X})] =E[v(x)]=v(x). (4.2)
For the case r > t, since W; = (W}, .. .,W,fl)T with Wf N (0,t), by combining with the Sinc
quadrature rule, we deduce

E[0(X!%)] = E[0(x+00(W, —Wj))]

:/H.{dv(x—l—ao\/mp) <\/%> deXP (_P;_P> dp
M

= Z v(x+c70\/r—thk)ak+R1Ew(x)
=M
M
= Z v(x—i—am/r—thk)ﬁﬁ/f—f—ﬁ%d(x), (4.3)

k=—M

where

k= (ki,....ks)" : i ki
=(ky,..., o=\ ok, ar= exp| —- ,
< 1 d) k 11211: k; k; \/E P( ) )

and
M M M

X
=Y X Bemwm (44)
k=M k=M k=M k= Mm%k

Here RM(x) and RM(x) are the Sinc truncation errors defined as

RM(x) :/H.{dv(x+cfo\/mp) (%) dexp <_pTTp> dp

M
— Y o(x+ooVr—thk)ay, (4.5a)
k=—M
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RIEVI(x):/]Rdv(x%—cTo\/mp) <L>dexp (_pTTp> dp

V2
M
— Y v(x+opVr—thk) By (4.5b)
k=—M
Take x=x,, € D), in (4.3) and choose the free parameter 1 by
opVr—th=Ax, (4.6)
so that the points

X +00V T —thk =X +KkAX =%, € Dy,. 4.7)

Thus, we define the approximation of E[v(X/*")] as

M

E [o(X5)] = ;Mv(xm+k)ﬁ£4, Xm € Dy (4.8)

To write the equations in (4.8) in matrix form, we define the matrix Gps(r —t) of order Ny
as

ao al .o [XM .o [X—M oo .o aiz a—l
X_1 &y K1 o X_ M N_3 Ko
1
GM<1’—t)— o ,
Z Ky %)) X3 e &M X_ M x_q xQ o1
=-M aq Ky - &M X_M o_q X0
where
L ( k2h2> L
k V21 P 2 )’ oo/ T—t
that is,
. Ax ox ( k2 Ax? >
(= ———— —_ .
0o/ 27t (r—t) P 202 (r—t)

Let v and V be the vectors of {v(x,,)} and {Ey[v(X}*)]} ordered lexicographically,
respectively, then we can write the Eq. (4.8) as

V=G(r—t)v, (4.9)

where the matrix G(r—t) is defined by

GM(T—t),
G(r—t)=4 Gu(r—t)@Gm(r—t),
Gm(r—H)@Gum(r—t)@Gum(r—t),

(4.10)

S W
I
W N
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Let u, (or u,(ql)) €RM be the approximations of the solution u(t,,x) (or u(t,,x)) at the
spatial points in Dy, which are ordered lexicographically. Then by using (4.9) to approxi-
mate the expectations in the semidiscrete scheme (3.8), we get the following fully discrete
s-stage SRK scheme in the matrix form:

0) _
Uy =Unii,
i—1

u‘: Gt'—t‘ oc--u‘+At i u' i=1,...,s .

V=Y G(th—th) () + At f(w))), i=1,...,5, (4.11)
j=0

ui’l:u1(’lS)l

where G(#,—#) is defined by (4.10) with the free parameter h =h;; given by

iy = A 4.12)

oo/ th—H.

It is worth noting that for i, = t},, the matrix G (0) becomes the unit matrix of order N¢,
which can also be obtained from the equality in (4.2).

Remark 4.1. When the elements of ¢ in (1.1) are not a constant, we can also define the
matrix G(r—t) by taking different free parameters in different dimensions. Specifically,
in the [-th dimension, we choose the free parameter /; by

Ax

hy= , 1=1,...d.
o\ r—t

Remark 4.2. Except its spectral accuracy, the main reason we choose the Sinc quadrature
rule over other quadrature rules is that its quadrature points are uniform and contain
a free parameter h. Thus, by setting different values of i for different time increments be-
tween different intermediate times, we can obtain different uniform quadrature points to
avoid using the interpolation when approximating the conditional expectations in high-
order time semidiscrete SRK methods with multi-stages.

4.3 The fully discrete MBP

In this subsection, we show the MBP-preserving of the fully discrete SRK scheme. To this
end, we denote by |- ||« the vector or matrix maximum norm. Then by (4.10), we have

N{
|G(r—1)]|ec =max (G(r—t))z.jzl, VO<t<r<T. (4.13)
1 "
j=1
Let ry and r; be the two parameters defined in (3.9) and (3.10). Then we have the
following theorem.
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Theorem 4.3. Assume that f satisfies the conditions (3.9) and (3.10), then if ||uy11|lc <p, the
solution u, obtained from (4.11) satisfies ||u, ||« < p, provided that

At<Cry, C= nl%nﬁ_l] (4.14)

when B;; are all nonnegative, or satisfies

At<Cmin{r{,ry}, C= mm (4.15)

‘:Bl]’

whenever there is a negative p;.

Proof. Since |[u,11]|« < p, we can suppose that H”;Sj}rluoo <p for all j <i—1. For the i-th
stage, by using (4.13) and the conditions in the theorem, we deduce

, i—1 S ' ‘
o5 oo < Y- G (th = ) | s+ e85 ()],

i=0
i1 ‘ y .

< 2061']' u,(qj) +At&f(u£{))
j=0 lxij 00
i1

<Y wjp=p.
i=0

Then by induction, we get ||u, ||« < p, which completes the proof. O

Now we present some specific fully discrete MBP-preserving SRK schemes with up
to fourth-order accuracy as below.

¢ The one-stage first-order SRK (SRK1) scheme,
¢ The two-stage second-order SRK (SRK2) scheme,

ul) = G(AE) (tp i1+ Dtf(1,11)),

1 1 (4.17)
u, = EG(At)unH + 5 (u,(ql) +Atf(u£,l)) ).
¢ The three-stage third-order SRK (SRK3) scheme,
2At 2At
u=c <T> (un+1+7f<un+l>), (4.182)

2At 1 4At
():§G< 3 )un+1+§<u1(1)+—f( )) (4.18b)
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U, = %G(At)unﬂ + 11258 G(At) (un—H + %f(”nﬂ))
T@Een) e

¢ The four-stage fourth-order SRK (SRK4) scheme,

ull) = (%) (un+1+£f(un+1)> ,

():;G<A2t> <un+1 f(unga )‘f’%(un +Atf( ))
Y = GO (1~ At (011)) + 56 (%)( - 1>>
(4.19)

o) (4.
un:;G <A2t> ( +2 f( )) +%G <7> 2
+% (u,(f)—k?f(u;(f))) .
We also list the values of C in Theorem 4.3 for the schemes (4.16)-(4.19) as

32
e~(1122).

It is reasonable to assert that the schemes (4.16)-(4.19) are optimal MBP-preserving SRK
schemes from the point of the value of C. To illustrate this point, we give some other
three-stage third-order and four-stage fourth-order MBP-preserving SRK schemes as be-
low.

* The three-stage third-order SRK (SRK3-I) scheme,

A A
u =G <§t> <Mn+1+§tf(”n+1)> ,
ul? ):%G<2§t> <un+1—%f(un+1)> +§G<%> () +atf(ul)),  @20)

3 2At (1) 2At 1 At (2) (2)
1= 4G< 3 >< S )> 4G< 3 ) (" +30f (7))
¢ The four-stage fourth-order SRK (SRK4-I) scheme,

aV =G (%) <un+1+% f(um)), (4.21a)
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1 _ (At At 1
u,(f‘) - EG <7> <un+1 - 7f<un+l)> +§( £ll)—f—Atf(”gll)))/ (4.21b)
1 At 1 _ (At
u1(13) = ZG(At) <un+l - 7f<un+l)> + ZG (7) (ugll) _Atf(ufil)))
+%G (%) (D +20tf (u?)), (4.21c)
1 _ (At At 1 _ (At
Upi1= §G <?> <u1(11)+7f(”1(11))> +§G (7) u?)
1 At
+3 (u,(f) +5 f(u,(f))> . (4.21d)

Then we obtain the values of C for the schemes (4.20) and (4.21) as

11
o~ (53)

which indicates that the schemes (4.18) and (4.19) are indeed more optimal third-order
and fourth-order MBP-preserving SRK schemes, respectively.

4.4 The fully discrete error estimate

In this subsection, we derive the error estimate of the fully discrete SRK scheme. To this
end, we introduce the following two useful lemmas.

Lemma 4.1. For sufficiently small h, if there exists a positive number vy such that o < Mh?, it

holds that
21,2
<Chexp (— M2h ) ,

where C is a positive constant depending only on <.

M
Z txk—l

k=—M

Proof. By repeatedly applying Theorem 4.2, we get

x'x ;U nk’k
/}Rdexp<—7>dx—h Zexp(— > >

k=—M

27,2
<Chexp <—M2h )

Then by using the definition of aj in (4.4), we deduce

212
<Chexp (— M2h >,

which completes the proof. O

'(mf—wz_n)d 3w

k=M
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Lemma 4.2. Assume that v is bounded. For sufficiently small h, if there exists a positive number
Yo such that yg < MHh?, it holds that

21,2
R, < Chexp (-5 ),

2

where C is a positive constant depending only on vy and ||v|| .
Proof. By using the definitions of B, R¥(x) and R¥(x) in (4.4)-(4.5), we get

M
|R§A(x)|: E[o(X/¥)]— ). v(x+0Vr—thk) B!
k=M
M 1
= RY(x)+ Y ax (1—M7>v(x+m/r—thk)
k=—M k=—M&k
M 1 M
<||RE ||;0+|1— Wy ||| Lo
H E HL ZﬁifMNk kEM kH HL
M
=[|RE | +| X ax—1{[[ol|-
k=M

Since v is bounded, Theorem 4.2 and Lemma 4.1 imply that

M2h?
IR < Chexp (25,

M
Z K — 1
k=—M

which completes the proof. O

M2h2>

||v||L < Chexp (—

Now we turn to the error analysis of the fully discrete SRK scheme. To proceed, we
write (4.11) in the following Butcher form:

(0)

un :ui’l+1/
‘ ' i~1 o .
=GB kS TG ) f)), i=1es, 62
=0
un:un .

Let U, and U.” be the restrictions of uy(x) and ne (x) on the mesh Dy, respectively, and
then we have

u)gzO) = ui’l+1l
) ] i—1 , . . .
u;gZ) =G (tn+1 - tgq) Un+1 + At ZﬂijG (tln — t;)f(u?(l])) +1’,(11), i= 1/- /5, (423)
j=0
u,=u,
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where {r,(f)} are the corresponding Sinc truncation errors. Define the constant kg as

Ax

hy= , 4.24
0 oov/AE (4.24)

then the free parameter /;; defined in (4.12) for G(t{, —t!) satisfies
hij = A o A g (4.25)

oor/th—t,  0VAL

Theorem 4.4. Let u,(x) and u, be the numerical solutions obtained from the time semidiscrete
SRK scheme (3.8) with un,(x) = ¢(x) and the fully discrete SRK scheme (4.22) with un, = Uy,
respectively. Assume that || @/~ <p, Mho>1 and {h;;} are sufficiently small. Then under the
conditions in Theorem 3.1, we have

Czho _ M2

U =l < == —(CS(T ) 1), (4.26)

where C = ‘rgax\ f/(&)| and the positive constant Cy is independent of At and hy.
<p

Proof. Define the spatial errors of the scheme (4.22) as
e,=U,—u,, e,(f) = U,Si) —u,(f), i=0,...,s.
By combining (4.22) and (4.23), we get fori=1,...,s,

. ) i—1 ) . . . )
i) =G (tuia—t)) ena+ Dt Y agG(th—t) (F(UV)) = F(u)) +).
j=0

Based on the conditions in the theorem, using Theorems 3.1 and 4.3, we have
|l o<p [ <o i=0,s,

which leads to

i 1|oo§!!en+1!!oo+At§1|G(f’—tl Lol @) = £ @) [+ (1)

< lewenllot ALY e + S
]_

. i=1,...s. (4.27)

o]

When Mhg >1, it is easy to verify that he—M*H?/2 jg decreasing with respect to i for h > hy.
Since hl-]- > hg as shown in (4.25), using Lemma 4.2, we obtain
) Mzhfj M2i2
]| < ZChl]e <Cshpe™ 2. (4.28)
]_
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Inserting (4.28) into (4.27) yields

25,2
He” Hoo<||ei’l+l||oo+CAtZHen H +CSI/Z0€_MThO_
=0
We claim that

M212

He,(j)Hoo <(1+CAty (|\en+1||oo+Cshoe_To), j=0,...s. (4.29)

Indeed, we assume that (4.29) holds for j=0,...,i —1. Then by induction, we get
2h2

, i—1 '
H&WMS<I+CMZRI+©My>Omwwm+cww—%&>
=0

2,2

~ . M 0
:(1+CAt)l<|\en+1|\oo+Cshoe*T), i=0,....s.
(5)

Since e;; =e,;’, we have

_ Mg
leales < m+CAw(wHﬂm+cww =)
m2i% Ni—
< (14+CAH) N8| e || o+ Cshge™ 2 Z (14+CAt)’s
i=1
< Colto M0 (oot
ST (),
where the constant C,=C/C. O

By combining Theorems 3.2 and 4.4, we now give the error estimate of the fully dis-
crete SRK scheme (4.11). Let u(t,) be the restriction of u(t,x) on the mesh D, and we
obtain the following theorem.

Theorem 4.5. Let u(t,x) be the exact solution of (1.1) with u e Cf 242 and u, be the numer-

ical solution obtained from the fully discrete SRK scheme (4.11) with un, =u(T). Assume that
@[l <p, Mho>1 and {h;;} are sufficiently small. Then under the conditions in Theorem 3.1,

we have h
e M2 h

u t?’l — Uy OOS eCS(Tftn)_l Cl At p+C2 0 0

At

7

where C = ‘rrTax\ f/(&)| and the two positive constants Cy and Cy are independent of At and hy.
&<p

Remark 4.3. The error estimate in (4.26) shows that the fully discrete SRK scheme can

achieve exponential order convergence rate in space. To be more specific, we set At

and Ax to satisfy Ax/+/ At=0y/2 and thus
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Then by (4.26), the spatial error of the scheme is about O(exp(—M?/8)/At), which de-
cays in an exponential speed with respect to M2. Thus, the spatial error of the fully
discrete SRK scheme behaves like the one of spectral method, which is also convergent
with exponential order.

5 Numerical experiments

To validate our theoretical results, we consider the reaction-diffusion equation in the
backward form
u+eAu+f(u)=0, xeD=(0,1)% tc[0,T) (5.1)

with the terminal condition u(T,x)=¢(x) and subject to the periodic boundary condition.
In this case, we have
=12,

and thus, by (4.12) and (4.24), we obtain the parameters {hij} and hy as

Ax Ax

hij=————————, hy :
€4/2(ci—c;)At eV 2At

ij=

In our tests, we set At and Ax to satisfy Ax/(ex/ﬂ) =1/2 to get hp =1/2 and h;; =
1/(2 \/CZTCJ ).

It is well known that the Eq. (5.1) can be seen as the L? gradient flow of the energy
functional

E(u):/D<§|Au|2+F(u)> dx, (5.2)

where F(u) is a given potential function with F'(u) = — f(u). Hence, the solution u(t,-)
of (5.1) decreases the energy (5.2) when t decreases from T to 0, which is the so called
energy dissipation law. In our tests, we will show that the proposed fully discrete SRK
schemes can preserve this dissipation law.

We point out that we plotted Figs. 2, 3, 5, 6 and 8 in the backward order in the follow-
ing subsections, where the abscissa from left to right is the values of T—t with t decreasing
from T to 0 or to a certain value smaller than T (e.g. to T—20 in Fig. 2). Moreover, all the
figures in the numerical experiments section in our previous work [35] were also plotted
in such a backward order.

5.1 Convergence tests

In this subsection, we test the convergence rates of the fully discrete SRK schemes (4.16)-
(4.21). To this end, we set e =0.1 and consider the Ginzburg-Landau potential, i.e.

flu)y=u—u’. (5.3)
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We take T =1.0 and choose the terminal condition as
¢(x,y) =0.1(sin(2mx)cos(2ty) +1).

To compute the errors, we regard the solution obtained by the SRK4 scheme (4.19) with
At=1/(2x40%) and M =30 as the benchmark.

First, we test the convergence with respect to the quadrature number M. Since hy =
1/2, the estimate in (4.26) shows that the theoretical spatial error is about

o(e—%):o(e—%z). (5.4)

Now we fix At =1/(2x16%) and calculate the numerical solutions of the SRK4 scheme
at the time t=0 with M =5,6,...,20. The numerical errors in the maximum-norm sense
are presented in Fig. 1, which is clearly observed that the convergence rates with respect
to M? are exponential order as shown in (5.4). It is also seen that when Mhg>7, the errors
remain almost the same, which is consistent with the conclusions in [38]. Thus, we shall
always take M =20 (so that Mhy =10 > 7) in the following tests to guarantee enough
spatial accuracy.

Second, by setting M =20, we test the convergence in time. We calculate the numeri-
cal solutions of the schemes (4.16)-(4.21) at t =0 with various time step sizes At=1/(2k?)
for k=2,4,...,16. For comparison purpose, we compute the numerical solutions of the
exponential time differencing Runge-Kutta (ETDRK) schemes up to second-order pro-
posed in [9] and the IFRK schemes up to fourth-order constructed in [20] with the same
time steps, where the central finite difference method with Ax=1/128 is adopted for the
spatial discretization. The maximum norms of the numerical errors and corresponding
convergence rates are listed in Tables 1-4, where the theoretical temporal convergence

10°F —o—|leol
—e—exp(—M?/8)

L™ error

10710 F 1

15

107 1 L N N . . .
0 50 100 150 200 250 300 350 400
M2

Figure 1: Evolutions of the errors of the SRK4 scheme with respect to M2.
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Table 1: Errors and convergence rates of the first-order schemes.

N, SRK1 ETDRK1 IFRK1

Error Rate Error Rate Error Rate
2x2' | 1.523E-02 0.000 | 1.298E-02 0.000 | 1.523E-02 0.000
2x2% | 1.523E-02 0.000 | 1.298E-02 0.000 | 1.523E-02 0.000
2x4% | 3.983E-03 0.968 | 3.496E-03 0.946 | 3.983E-03 0.968
2x6% | 1.785E-03 0.990 | 1.576E-03 0.982 | 1.785E-03 0.990
2x8% | 1.007E-03 0.995 | 8.912E-04 0.991 | 1.007E-03 0.995
2x10% | 6.454E-04 0.997 | 5.717E-04 0.995 | 6.454E-04 0.997
2x122 | 4485E-04 0.998 | 3.975E-04 0.997 | 4.485E-04 0.998
2x14% | 3.297E-04 0.999 | 2.923E-04 0.998 | 3.297E-04 0.999
2x16% | 2.525E-04 0.999 | 2.239E-04 0.998 | 2.525E-04 0.999

Table 2: Errors and convergence rates of the second-order schemes.
N, SRK2 ETDRK2 IFRK2

Error Rate Error Rate Error Rate
2x2% | 6.307E-04 0.000 | 5.388E-04 0.000 | 6.307E-04 0.000
2x4% | 4221E-05 1.951 | 3.613E-05 1.949 | 4.221E-05 1.951
2x62 | 8.444E-06 1.984 | 7.232E-06 1.984 | 8.444E-06 1.984
2x8% | 2.684E-06 1.992 | 2.299E-06 1.992 | 2.684E-06 1.992
2x10% | 1.101E-06 1.995 | 9.437E-07 1.995 | 1.101E-06 1.995
2x122 | 5.318E-07 1.997 | 4.556E-07 1.997 | 5.318E-07 1.997
2x142 | 2.872E-07 1.998 | 2.461E-07 1.998 | 2.872E-07 1.998
2x16% | 1.684E-07 1.998 | 1.443E-07 1.998 | 1.684E-07 1.998

Table 3: Errors and convergence rates of the third-order schemes.

N, SRK3 SRK3-1 IFRK3

Error Rate Error Rate Error Rate
2x2% | 1.301E-05 0.000 | 1.175E-05 0.000 | 1.301E-05 0.000
2x4% | 2.183E-07 2.949 | 1.964E-07 2.952 | 2.183E-07 2.949
2x6% | 1.942E-08 2.984 | 1.746E-08 2.985 | 1.942E-08 2.984
2x82 | 3471E-09 2.992 | 3.123E-09 2.992 | 3.472E-09 2.992
2x10% | 9.112E-10 2.997 | 8.217E-10 2.991 | 9.122E-10 2.995
2x122 | 3.049E-10 3.002 | 2.774E-10 2.978 | 3.058E-10 2.997
2x14%2 | 1.207E-10 3.007 | 1.130E-10 2.914 | 1.213E-10 2.998
2x16% | 5.414E-11 3.000 | 5.570E-11 2.647 | 5.447E-11 3.000
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Table 4: Errors and convergence rates of the fourth-order schemes.

SRK4 SRK4-1 IFRK4
Error Rate Error Rate Error Rate
2x2% | 5.040E-07 0.000 | 5.040E-07 0.000 | 5.040E-07 0.000
2x4% | 2.073E-09 3.963 | 2.073E-09 3.963 | 2.073E-09 3.963
2x6% | 8.143E-11 3.992 | 8.143E-11 3.992 | 8.142E-11 3.992
2x8% | 7958E-12 4.042 | 7.958E-12 4.042 | 7.956E-12 4.042
2x10% | 1.184E-12 4.269 | 1.183E-12 4.272 | 1.176E-12 4.284
2x12% | 4.363E-13 2.739 | 4.367E-13 2.732 | 4.673E-13 2.530
2x14% | 2.920E-13 1.303 | 2.952E-13 1.270 | 3.495E-13 0.942
2x16% | 2.537E-13 0.526 | 2.549E-13 0.550 | 3.187E-13 0.346

N

rates are obviously observed. Moreover, the SRK schemes (4.16)-(4.21) can achieve the
same accuracy as the ETDRK and IFRK schemes with the same convergence rates.

5.2 MBP preservation and energy stability

In this subsection, we test the MBP-preserving and energy-decreasing properties of the
fully discrete SRK schemes. To this end, we use the schemes (4.16)-(4.21) to simulate the
processes of the coarsening dynamics with € =0.01 and T = 1000 for the Flory-Huggins
potential with

0. 1—u
f(u)—§1n1+u

+0u, 6=08, 6.=1.6. (5.5)

In our simulations, we take the uniform time step size At=1/(2x 22 ), then the spatial
mesh size is obtained as Ax =e+/At/2=0.0025. The terminal data is generated by the
uniform distribution on (—0.8,0.8). We plot the evolutions of the maximum norms of the
numerical solutions in Fig. 2, where the red dash horizontal line shows the theoretical
upper bound p~0.9575 of the numerical solutions. We observe that the maximum norms
of the numerical solutions are all bounded by the theoretical value, which suggests that
the schemes preserve the MBP. Fig. 3 plots the evolutions of the energies of the numerical
solutions, which show that the schemes inherit the energy dissipation law.

In addition, we present in Fig. 4 the evolution of the phase structures at T—t =4,
6,10,100,350, and 660 generated by the SRK4 scheme, respectively. It is seen that the sim-
ulated dynamics begins with a random state and towards the homogeneous steady state
of constant p, which is reached after about T —t =689 in our simulation. The evolutions
of the phase structures generated by the other SRK schemes are similar to the one of the
SRK4 scheme.
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Figure 2: Evolutions of the supremum norms of the SRK schemes.

5.3 Comparison for third-order schemes

In this subsection, we illustrate the importance of MBP-preserving schemes. To this end,
we solve the Eq. (5.1) with the Flory-Huggins potential using two different third-order
schemes, that is, the SRK3 scheme (4.18) and the IFRK3 Shu-Osher scheme considered
in [20,27] (see [20, Scheme (29)] or [27, Scheme (6.2)]). Since the essential condition ¢; > ¢;
for i > j is not satisfied, the IFRK3 Shu-Osher scheme may not preserve the MBP.

We set € =0.1 and T =20. A random terminal data is generated by the uniform dis-
tribution on (—0.8,0.8). For the SRK3 scheme, we take At=1/72 and Ax=1/120. As for
the IFRK3 Shu-Osher scheme, we take At=1/200 and Ax=1/512.

Fig. 5 presents the evolutions of the maximum norm and the energy of the numerical
solutions of the SRK3 scheme, where the MBP is perfectly preserved and the energy de-
creases monotonically along the time. Fig. 6 gives the evolutions of the maximum norm
and the energy of the numerical solutions of the IFRK3 Shu-Osher scheme, which clearly
show that the IFRK3 Shu-Osher scheme does not preserve the MBP and the energy dissi-
pation law even for a small time step size. Although the IFRK3 Shu-Osher scheme may
preserve the MBP when the time step size is small enough, there is no theoretical proof
for now.



Y. Sun and W. Zhao / CSIAM Trans. Appl. Math., 6 (2025), pp. 176-206 201

12 . 12 . : . :
[—sa1] [—=srxe]
10 1 10 1
8 0 8 0
& st S s}
] 0.1 @ 0.1
(1T} w
4 4
-n.2 -0.2
2 il 5 10 15 - ot ] 5 10 15
0 [+] -
0 200 400 500 800 1000 0 200 400 500 800 1000
time: time
12 . 12 . . . .
- - - SRK - - - SRK4-
ok SRK3| | ok SRKA] |
8 0 f— - a8k 0 == “\
Y LY
>~ A >~ A
g °l 01 \ g °l 01 \
& ‘ \.\ & ‘ \.\
4 e i A s
-0.2 — -0.2 —
2 il 5 10 15 - at il 5 10 15
4] (1]
0 200 400 500 800 1000 0 200 400 500 800 1000
time time

Figure 3: Evolutions of the energies of the SRK schemes.
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Figure 4: Evolution of the phase structure obtained by using the SRK4 scheme. From left to right and from
top to bottom: T—t=4,6,10,100,350, and 660.
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Figure 6: Evolutions of the supremum norm (left) and the energy (right) for the IFRK3 Shu-Osher scheme.

5.4 3D coarsening dynamics

In this subsection, we consider the simulation of the 3D coarsening dynamics of the
Eq. (5.1) for the Flory-Huggins potential with € =0.02 and T =500. In our simulation,
we take the time step size At=1/(2x2?) and the corresponding mesh size Ax =0.005.

We use the SRK4 scheme to simulate the 3D coarsening dynamics with a random ter-
minal data ranging from —0.8 to 0.8. Fig. 7 presents the evolution of the zero-isosurface
of the numerical solutions at T —t=1,10,100,200,300, and 330, respectively. Similar to the
2D case, the simulated dynamics begins with a random state and reaches the steady state
of constant p around T —t=2336. Fig. 8 gives the evolutions of the maximum norm and
the energy of the numerical solutions. It is seen again that the MBP is perfectly preserved
and the energy decreases monotonically along the time.
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Figure 7: The snapshots of the evolution at T—#=1,10,100,200,300,330, respectively (left to right and top to
bottom), for the 3D coarsening dynamics.
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Figure 8: Evolutions of the supremum norm (left) and the energy (right) for the 3D coarsening dynamics.

6 Conclusions

We proposed and analyzed a class of high-order fully discrete MBP-preserving SRK
schemes for solving the semilinear parabolic equations by using the Sinc quadrature rule
to approximate the conditional expectations in the time semidiscrete SRK schemes de-
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veloped in the first part of this series. We established their error estimates rigorously,
which show that the proposed schemes can achieve exponential order accuracy in space.
Particularly, we constructed several specific fully discrete MBP-preserving SRK schemes
with up to fourth-order accuracy in time. In addition, by analyzing the eigenvalues of the
conditional expectation operator in SRK method and the exponential Laplacian operator
in IFRK method under the periodic boundary condition, we revealed the equivalence of
the time semidiscrete SRK and IFRK methods. Some numerical experiments were carried
out to verify the theoretical results and to validate the exponential order convergence rate
in space of the proposed fully discrete schemes.
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