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Abstract. We propose a novel two-stage model for image denoising. With the group
sparse representations over local singular value decomposition stage (locally), one can
remove the noise effectively and keep the texture well. The final denoising by a first-
order variational model stage (globally) can help us to remove artifacts, maintain the
image contrast, suppress the staircase effect, while preserving sharp edges. The exis-
tence and uniqueness of global minimizers of the low-rank problem based on group
sparse representations are analyzed and proved. Alternating direction method of mul-
tipliers is utilized to minimize the associated functional, and the convergence analysis
of the proposed optimization algorithm are established. Numerical experiments are
conducted to showcase the distinctive features of our method and to provide a com-
parison with other image denoising techniques.
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1 Introduction

Image denoising is a classical problem in image processing. Let X of dimension
√

N×
√

N
be an unknown clean image, Y be the given degraded image which is contaminated with

additive white Gaussian noise (AWGN) V∈R

√
N×

√
N ,

Y=X+V.

We desire to obtain X̂ – the most likely value of X given the degraded image Y. Quite
a few approaches or models have been proposed to deal with this problem, such as total
variation based models [29], wavelet transform approaches [27], the anisotropic diffusion
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filter [15], Perona-Malik filter [26], and nonlinear diffusion filters [20]. In this paper, we
are tackling the image denoising problem from the sparse representation point of view.

This idea of learning a dictionary that yields sparse representations for a set of train-
ing image-patches has been studied in a sequence of works [1, 2, 17, 19, 30, 31]. Given
a dictionary D∈R

n×K (with K > n, implying that it is redundant) containing prototype
signal-atoms dk∈R

n for k=1,.. . ,K, the goal of sparse representation is to represent an im-
age patch x ∈ R

n as a linear combination of few columns (atoms) from the redundant
dictionary D, that is,

α̂=argmin
α

{

µ‖α‖0+‖Dα−y‖2
2

}

,

where x and y are
√

n×√
n square matrixes representing the image patch data, y=x+v is

a noise version of x, x and y are the corresponding R
n-vector built from the columns of x

and y, α∈R
K is the sparse representation vector and ‖α‖0 =m≪n (‖·‖0 is ℓ0 norm). The

denoised image is x̂=Dα̂. Image denoising via sparse representation was first illustrated
in [12]. When training the dictionary, only small dictionaries can be composed. So the key
idea is to obtain a global denoising of the image by denoising overlapped local patches
of the image. For an

√
N×

√
N image X, let matrix Rij be an n×N matrix that extracts

the (i, j) block of size
√

n×√
n from the image. In fact, there are (

√
N−√

n+1)2 such
blocks. There are two ways to obtain a suitable dictionary D, that is, either choose one of
the linear transforms that sparsify the signal (e.g. Fourier, Cosine, Wavelet, etc.) or train
a dictionary from a set of sample signals. Assuming D is the dictionary to be trained,
then the maximum a posteriori (MAP) estimate will become the following form:

{X̂,D̂,α̂ij}=arg min
X,D,αij

{

λ‖Y−X‖2
2+∑

ij

µij‖αij‖0+∑
ij

‖Dαij−RijX‖2
2

}

, (1.1)

where X and Y are the corresponding R
N-vector built from the columns of X and Y,

‖x‖2=(x,x)1/2=(∑n
i=1 x2

i )
1/2 is the 2-norm of vector x, or the Euclidean norm of vector x.

There are two stages for the iterative process, that is, a sparse coding stage followed by
a dictionary update stage. An exact determination of the sparsest representations proves
to be an NP-hard problem [10]. Thus, approximate solutions are considered instead, such
as matching pursuit (MP) [22], the orthogonal matching pursuit (OMP) algorithms [34],
basis pursuit (BP) [7], focal underdetermined system solver (FOCUSS) [28], minimax-
concave penalty (MCP) [32], capped-ℓ1 (CL1) penalty [21], smoothly clipped absolute
deviation (SCAD) [14], and Log-Sum penalty (LSP) [5]. Different algorithms have been
proposed for dictionary design, such as generalizing the K-means, maximum likelihood
methods [17], method of optimal directions [13], maximum a posteriori probability ap-
proach [13], unions of orthonormal bases [1], K-singular value decomposition (KSVD)
algorithm [1, 12], and sequential generalization of K-means [31]. One shortcoming of
learning dictionaries lies in the fact that it leads to a high computational burden.

To enhance sparse representation, block matching 3-D (BM3D) has been proposed [8].
The enhancement of the sparsity is achieved by grouping similar 2D blocks of the image


