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Abstract. In this paper, we study numerical approximations of the ground states in
finite temperature density functional theory. We formulate the problem with respect
to the density matrices and justify the convergence of the finite dimensional approx-
imations. Moreover, we provide an optimal a priori error estimate under some mild
assumptions and present some numerical experiments to support the theory.
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1 Introduction

Density functional theory (DFT) [22,23] has been the most widely used method in elec-
tronic structure calculations, which achieves the best compromise between accuracy and
computational cost among different approaches [5,27,29, 34]. While the standard DFT
models are in principle for systems at zero temperature, a finite temperature DFT model
was proposed [30] for systems where the temperature effects on electrons are not neg-
ligible. The finite temperature DFT can be viewed as an extension of DFT by including
the electron entropy into the total energy, which considers the electrons within a canon-
ical ensemble [34]. It has not only been successfully applied to many practical simula-
tions (see, e.g. [24, 41]), but also used to resolve the “charge sloshing” phenomenon in
self-consistent field iterations for metallic systems by smearing the integer occupation
numbers into fractional ones (see, e.g. [28, 31]).
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The finite temperature DFT model is usually formulated by the so-called Mermin-
Kohn-Sham (MKS) equation [29, 30, 33]: Find the chemical potential u € IR, the orbitals
and occupation numbers (¢;,A;) € H'(R3) xR (i=1,2,...) satisfying
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with kg the Boltzmann constant and T the electron temperature of the system. The chem-
ical potential y is actually determined by the constraint (1.1e) that the sum of occupa-
tion numbers equals the electron number. In Eq. (1.1a), the potential includes the ex-
ternal potential vex representing the nuclear attraction, the Hartree potential vyy(p) =
Jrso(r)/|-—r|dr representing the mean-field electron repulsion, and the exchange-cor-
relation potential vy.(p) [29]. The Mermin-Kohn-Sham equation is a nonlinear eigen-
value problem, as the operator depends on both the eigenvalues and eigenfunctions to
be solved. This is usually solved by a self-consistent field (SCF) iteration algorithm in
practice. We note that the standard Kohn-Sham equations will be recovered at the zero
temperature limit, which gives the occupation numbers f;=1 wheni<N and f;=0 when
i> N under the gap condition Ay <Any1.

Validation of numerical results is a fundamental issue, particularly the discretization
error resulting from the choice of a finite basis set. For standard DFT models like orbital-
free and Kohn-Sham models, there are many works on the numerical analysis in the past
decade [3,4,9-11, 18, 25,42, 44]. The extension of the existing analysis to the finite tem-
perature DFT model presents additional complexity, as it requires the consideration of
a significantly bigger set of orbitals and occupation numbers. To the best of our knowl-
edge, there is very limited work devoted to its mathematical and numerical analysis.
In [36], the existence and uniqueness of solutions for the MKS equations were proved by
using the Banach’s fixed point theorem under the condition that the coupling constant is
sufficiently small. In [12], the existence and uniqueness were justified with the assump-
tion the absence of exchange correlation potential, by using the Schauder’s fixed point
theorem. In [14], the invariance of the energy functional and existence of the minimizer
of an ensemble Kohn-Sham model were studied, by involving a pseudo-eigenvalue ma-
trix. In [13], a similar problem, the Schrodinger-Poisson equation was considered and
the a priori error estimate was derived. We mention that for general MKS equation, the
convergence analysis and error estimates under the energy norm are still missing.



