$\mathbf{H}$(${\rm curl}^2$) Conforming Element for Maxwell’s Transmission Eigenvalue Problem Using Fixed-Point Approach

Authors

  • Jiayu Han
  • Zhimin Zhang

DOI:

https://doi.org/10.4208/csiam-am.SO-2021-0046

Keywords:

Maxwell’s transmission eigenvalues, curl-curl conforming element, error estimates.

Abstract

Using newly developed $\mathbf{H}$(${\rm curl}^2$) conforming elements, we solve the Maxwell’s transmission eigenvalue problem. Both real and complex eigenvalues are considered. Based on the fixed-point weak formulation with reasonable assumptions, the optimal error estimates for numerical eigenvalues and eigenfunctions (in the $\mathbf{H}$(${\rm curl}^2$)-norm and $\mathbf{H}{\rm (curl)}$-semi-norm) are established. Numerical experiments are performed to verify the theoretical assumptions and confirm our theoretical analysis.

Published

2025-09-11

Issue

Section

Articles