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CONTINUOUS/DISCONTINUOUS FINITE ELEMENT
APPROXIMATION OF A 2D NAVIER-STOKES PROBLEM
ARISING IN FLUID CONFINEMENT

HERMENEGILDO BORGES DE OLIVEIRA! AND NUNO DAVID LOPES?

Abstract. In this work, a stationary 2d Navier-Stokes problem with nonlinear feedback forces
field is considered in the stream-function formulation. We use the Continuous/Discontinuous Fi-
nite Element Method (CD-FEM), with interior penalty terms, to numerically solve the associated
boundary-value problem. For the associated continuous and discrete problems, we prove the ex-
istence of weak solutions and establish the conditions for their uniqueness. Consistency, stability
and convergence of the method are also shown analytically. To validate the numerical model
regarding its applicability and robustness, several test cases are carried out.
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1. Introduction

Given a bounded domain 2 := (0, K) x (0, L) of R?, where L and K are positive
constants, let us consider the following problem for the Navier-Stokes equations

(1) —vAu+ (u-V)u=f(x,u) — Vp in Q,
(2) divu=20 in

(3) u=u, on z=0,

4) u=0 on y=0,L andon z=K.

Here, u = (u,v) denotes the velocity field, p accounts for the pressure, v is the
kinematics viscosity, f = (f1, f2) is a feedback forces field (divided by the constant
density p that is supposed to be p = 1), u, := (ux, vs) is the prescribed velocity at
the strip entrance z = 0, and by x = (z,y) we denote a generic element of R2.

Problem (1)-(4) can be used to describe a planar steady flow of a viscous fluid
that is controlled by a feedback forces field. This type of forces field plays a central
role, for instance, in the confinement of magnetic fluids in Tokamaks and Stellara-
tors (ball- or torus-shaped devices used to produce controlled thermonuclear fusion
energy). In these devices, a powerful magnetic field is used to confine very hot
plasmas far enough away from the boundaries to prevent damage. The governing
equations of this real-world problem consist of the Navier-Stokes equations coupled
to Maxwell’s equations via the Lorentz force — the feedback forces field [16]. For
the sake of mathematical simplification, we only consider the Navier-Stokes prob-
lem (1)-(4) and proceed to characterize the type of forces field that can confine the
fluid. The fluid confinement property we are interested in for the problem (1)-(4)
can be read mathematically as follows:

(5) Jae€(0,K) : u=0 ae. inQy:=(a,K)x (0,L).

In the works [3,4,5, 6] we undertook a project to characterize the nature of the
forces field that can confine a fluid governed by a system of equations of the type
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(1)-(4). There we look at forces fields, the notation of which in its simplest form is:
(6) £(x, 1) == =0 (Jul""*u,0) ,

where § > 0 is a constant that accounts for the intensity of the forces field, and
o > 1 is another constant that characterizes the flow. The presence of feedback
forces field of the type (6) can also be justified in other applications, such as in
porous media flows and in continuous electromagnetic media. In porous media
it is known as the Forchheimer term and it is important to characterize the flow
resistance created by the skeleton of the porous medium, specially when the pore
Reynolds number exceeds 10 [29]. This term is also considered for some quasi-
stationary processes, in crystalline semiconductors, to model the density of sources
or sinks of free electrons in the semiconductor lattice [2].

For the different flow conditions considered in [3,4,5, 6], we have shown that a
feedback forces field of the type (6) can confine the fluid flow as long as the exponent
of nonlinearity o satisfies

(7) l<o<2.

The fluid confinement property was proved analytically in [3,4,5,6] by considering
the problem (1)-(4) in the stream-function formulation. This formulation is ob-
tained by taking the curl of the momentum equation (1), where the forces field is
given by (6), and by introducing the stream function

(8) Y u=1, and v=-—1Y, inQ,

which exists in view of (2) [17, Theorem 1.3.1]. By this procedure, we obtain the
following fourth-order nonlinear boundary-value problem

9) VARG + I, A0) = 6 (0,7 2,), i 9
(10) Y= f, and Z—ﬁ =g, on f*,
(11) =0 and g% =0 on fo,

where A21) accounts for the bi-Laplacian of 1, J (1, Ay) denotes the Jacobian

s A= et | S | g~ A0
oY

5w is the normal derivative of ¢, with n = (n1,n2) standing for the outward unit
normal to the boundary 9 of the domain 2, which in turn is decomposed into the
following two disjoint subsets

(12) "= {(z,y) €[0,K] x [0,L] : = = 0},
(13) = {(z,9) € (0,K] x [0,L] :y=0Vy=LVa=K}

Data f. and g., given in (10), can be written in terms of the prescribed velocity
(u, vs) at the strip entrance = 0 as follows

Yy
(14) )= [(u@ds e =, v
and are assumed to satisfy the following compatibility conditions

(15) f+(0) = £(L) =0, g.(0) = g.(L) = 0.



