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A DIRECT METHOD FOR SOLVING THREE-DIMENSIONAL

ELLIPTIC INTERFACE PROBLEMS

KUMUDU GAMAGE1,∗, YAN PENG2, AND ZHILIN LI3

Abstract. This paper presents a direct method for efficiently solving three-dimensional elliptic

interface problems featuring piecewise constant coefficients with a finite jump across the interface.

A key advantage of our approach lies in its avoidance of augmented variables, distinguishing
it from traditional methods. The computational framework relies on a finite difference scheme

implemented on a uniform Cartesian grid system. By utilizing a seven-point Laplacian for grid

points away from the interface, our method only requires coefficient modifications for grid points
located near or on the interface. Numerical experiments validate our method’s effectiveness.

Generally, it achieves second-order accuracy for both the solution and its gradient, measured in
the maximum norm, particularly effective in scenarios with moderate coefficient jumps. Extending

and building upon the recent work of [1] on 1D and 2D elliptic interfaces, our approach successfully

introduces a simpler method for extension into three dimensions. Notably, our proposed method
not only offers efficiency and accuracy but also enhances the simplicity of implementation, making

it accessible to non-experts in the field.
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1. Intrdoction

Interface problems have gained significant attention due to their extensive prac-
tical applications. Real-world examples of interface problems span diverse domains,
including fluid dynamics where phenomena such as bubble formation have been s-
tudied [2], electromigration of voids [3], glacier prediction [4], growth of internal
blood clots [5], and thermodynamics encompassing heat propagation in distinct
materials. Additionally, these problems extend to areas related to Stefan problems,
crystal growth [6], and various other applications.

In this paper, we consider the elliptic interface problem of the form,

∇ · (β(x)∇u(x)) = f(x), x ∈ Ω\Γ,(1)

[u](X) = w(X), X ∈ Γ,(2)

[βun ](X) = v(X), X ∈ Γ,(3)

with given boundary conditions on ∂Ω, where, Γ is a smooth interface in the domain
Ω and interface Γ divides the domain Ω into two subdomains Ω+ and Ω− and
therefore, Ω = Ω+ ∪ Ω− ∪ Γ. See Figure 1 for an illustration. X is a point on the
interface Γ, x is a point in Ω and n is the unit outward normal vector to the interface
at the point X. The superscript + or − denotes the limiting value of a function
from one side or the other of the interface. Here, [u] = [u](X) = u+(X) − u−(X)
is the jump in the solution at X and un = n .∇u = ∂u

∂n is the normal derivative
of the solution u. In many applications, the coefficient β often takes the form
of a piecewise constant value, while the source term f may have discontinuities
across the interface Γ. The jumps in the solution (2) and the flux (3), along with
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Figure 1. A diagram of a cubic domain Ω with a smooth inter-
face Γ, where n represents the unit outward normal vector to the
interface Γ.

the boundary conditions on ∂Ω, are typically guided by the underlying physical
principles.

Over time, substantial progress has been made in the development of numerical
methods for solving interface problems [7, 8, 9, 10, 11, 12, 13, 14]. Strategies
encompass the use of body-fitted grids [15, 16, 17], or the more favored Cartesian
grids [12, 18, 19]. The latter choice gains prominence due to its simplified grid
generation process, which is especially crucial when interfaces undergo frequent
shape changes, often encountered in various physical phenomena. The preference for
Cartesian grids is also amplified by the availability of versatile software tools such as
fast Poisson solvers [20], Clawpack [21], Amrclawpack [22], the level set method [23,
24, 25], structured multigrid solvers [26, 27], and the immersed boundary method
[10], along with others [28].

In Cartesian grid systems, interfaces are often embedded within a rectangular
domain (in 2D) or a cube (in 3D). The immersed interface method (IIM), pioneered
by LeVeque and Li [29], has emerged as a popular approach among the numerical
community. Being the first second-order method for solving interface problems
[30], IIM has been successfully applied to diverse linear and nonlinear problems,
including hyperbolic elliptic systems [31], elasticity systems [32], [33], Hele-Shaw
flow [34], traffic flow [35], glacier prediction [4], simulations of porosity evolution in
chemical vapor infiltration [36], and shape identification in inverse problems [37].

However, while the IIM capably captures the solution and its gradient in the
L∞ norm for elliptic interface problems featuring variable coefficient β in various
applications, it faces challenges when dealing with numerical examples characterized
by significant jump discontinuities in the coefficient β. In such cases, the resulting
linear system often becomes ill-conditioned, leading to potential non-convergence
or inaccurate outcomes [38].

To address the aforementioned convergence issues, a fast immersed interface
method (FIIM), also known as an augmented method, was introduced in [19]. This
method involves a preconditioning step for the elliptic equation before applying
the original IIM. Furthermore, it introduces an intermediate function to account
for the jump in the normal derivative across the interface, enhancing the utiliza-
tion of fast Poisson solvers. Although FIIM enhances accuracy, its implementation
comes with complexities, notably involving establishing a Schur complement sys-
tem, which adds computational overhead. Consequently, a novel direct IIM [1]


