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A DIFFERENCE FINITE ELEMENT METHOD FOR
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Abstract. In this paper, we consider 3D steady convection-diffusion equations in cylindrical

domains. Instead of applying the finite difference methods (FDM) or the finite element methods

(FEM), we propose a difference finite element method (DFEM) that can maximize good appli-

cability and efficiency of both FDM and FEM. The essence of this method lies in employing the

centered difference discretization in the z-direction and the finite element discretization based on

the P1 conforming elements in the (x, y) plane. This allows us to solve partial differential equa-

tions on complex cylindrical domains at lower computational costs compared to applying the 3D

finite element method. We derive stability estimates for the difference finite element solution and

establish the explicit dependence of H1 error bounds on the diffusivity, convection field modulus,

and mesh size. Finally, we provide numerical examples to verify the theoretical predictions and

showcase the accuracy of the considered method.
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1. Introduction

In this paper, we consider the difference finite element method (DFEM) to the

following convection-diffusion equation with the homogeneous Dirichlet boundary

condition:

−α∆̂u(x, z) + β̂ · ∇̂u(x, z) = f(x, z), (x, z) ∈ Ω,(1a)

u(x, z) = 0, (x, z) ∈ ∂Ω.(1b)

Here, and in what follows, frequently we use the notation x = (x, y). The unknown

is a function u : Ω → R, Ω is the closure of the open set Ω = ω × [a3, b3], α > 0

is the constant diffusivity, β̂ = (β, β3) = (β1, β2, β3) is the given convection field

satisfying that the components are constants and the RHS function f : Ω → R
is the given source function. In a quest for greater clarity, we use the following

notation ∆̂ = ∂xx + ∂yy + ∂zz and ∇̂ = (∂x, ∂y, ∂z)
⊤.

The finite element method (FEM) and the finite difference method (FDM) are

two traditional important methods to solve partial differential equations (PDEs)

using computers. FEMs are more adequate to handle PDEs with irregular coeffi-

cients and boundary conditions prescribed on complex geometric shapes, and thus

can be used for modeling complex physical problems, but more expensive computa-

tion costs are needed especially for high-dimensional problems. On the other hand,

FDMs have clear advantages in their implementation and low computing cost, but

FDMs that require high regularity of solutions to the governing PDEs have certain
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limitation in direct application. For references, the reader may suggested to consult

[2, 4, 9, 22, 21, 19, 3, 6, 1, 7, 15, 18], and the references therein.

Based on these, it is natural to combine these two methods to maximize appli-

cability and efficiency to solve a certain suitable class of problems that bear both

benefits of FEM and FDMs. Such cases occur, for instance, in dealing most prob-

lems with cylidrical domains whose underlying base geometries are complicate. In

this spirit, the idea of difference finite element methods (DFEM) have been devel-

oped in recent years [14].

In [14], the authors proposed the Difference Finite Element Method (DFEM)

for solving the 3D Poisson equation. The method utilizes a combination of the

finite difference discretization in the z-direction and the finite element discretiza-

tion in the (x, y)-domain ω using the P1-conforming elements. In DFEM, the

numerical solution of the 3D Poisson equation is obtained by solving a series of

2D elliptic equations, thereby reducing the computational complexity. Specifically,

the coefficient matrix only needs to be computed in a 2D domain ω, making the

overall computation more efficient. In this paper, our work are to discretize the

convection-diffusion equation in a 3D domain using the Difference Finite Element

Method (DFEM) and explicitly provide the matrix representation of the DFE dis-

cretization of the gradient term. This allows us to use the finite element method

in the (x, y) plane where high flexibility and strong adaptability are required, and

use the finite difference method in the z-direction to save computation cost and

reduce implementation difficulty. Superconvergence in H1 norm of this approach

was studied in [10]. Since then, the idea of DFEM has been applied to solve 3D

steady state Stokes and Navier-Stokes problems [17, 16, 11, 12].

We are interested in further development of DFEM for the convection-diffusion

equation particularly in cylindrical domains. FDM is applied in the lateral direction

while FEM is applied in the longitudinal 2D domain.

The remaining part of this paper is structured as follows. In Section 2, we recall

the FE methods and establish the stability and error estimates for the 2D steady

convection-diffusion problems. In Section 3, we present the DFE method based

on the P1-element for the z-direction discretization of the 3D steady convection-

diffusion problems and perform stability and error estimates. In Section 4, we

define the DFE solution pair uhτ based on the P1 × P1-element of the 3D steady

convection-diffusion equation and prove the first order H1-error bound of the DFE

solution pair uhτ with respect to the solution u of the 3D steady convection-diffusion

equation. In Section 5, several numerical examples are presented to illustrate the

effectiveness of the proposed method. Finally, the conclusions are drawn in Section

6.

1.1. Notations. For measurable set S in Rd, by (·, ·)S we denote the L2(S) inner

product. For k ∈ Z, standard notations for Sobolev spaces Hk(S) will be employed.

By ∥v∥k,S and |v|k,S we mean the standard Sobolev norms and seminorms for

Hk(S). ⟨·, ·⟩X′,X will mean the duality paring between the topological vector space

X and its dual X ′. However, wherever there is no confusion, the subscripts may be

omitted.
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