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Abstract. In this paper, we prove the existence of weak solution and the uniqueness of strong
solution to a Voigt-regularization of the three-dimensional thermally coupled inviscid, resistive
MHD equations. We also propose a fully discrete scheme for the considered problem, which is
proven to be stable and convergent. All computational results support the theoretical analysis

and demonstrate the effectiveness of the presented scheme.
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1. Introduction

The incompressible magnetohydrodynamic (MHD) describes the dynamic be-
havior of an electrically conducting fluid under the influence of a magnetic field,
and has a wide range of applications in scientific and engineering, such as elec-
tromagnetic pumping, liquid metal, electrolyte, and so on (see [1, 2, 3, 4, 5]). It
consists of a viscous, incompressible fluid which owns the property of electric cur-
rent conduction and interacting with electromagnetic induction. The MHD flow
has a multi-physics phenomenon: the magnetic field changes the momentum of the
fluid through the Lorenz force, and conversely, the conducting fluid influences the
magnetic field through electric currents. Additionally, if the buoyancy effect cannot
be neglected in the momentum equation due to temperature differences in the con-
ductive flow, then the incompressible MHD equations are usually coupled to the
heat equation. In this way, multiple physical fields (velocity, pressure, magnetic
and temperature) will be coupled in the MHD system.

Usually, the thermally coupled incompressible MHD system is given as follows
[6]:

ut − ν∆u+ (u · ∇)u+∇(p+
1

2
|B|2)− (B · ∇)B = f + βθ,(1a)

∇ · u = 0,(1b)

Bt − µ∆B + (u · ∇)B − (B · ∇)u+∇q = ∇× g,(1c)

∇ ·B = 0,(1d)

θt − κ∆θ + u · ∇θ = Ψ,(1e)

with appropriate boundary and initial conditions. Here, ν ≥ 0 is the fluid viscosity,
µ ≥ 0 is the magnetic resistivity, κ is the thermal conductivity, β is the thermal
expansion coefficient, and the unknowns are the fluid velocity field u(x, t), the fluid
pressure p(x, t), the magnetic field B(x, t), the magnetic pressure q(x, t), and the
temperature field θ(x, t). In fact, by a posteriori, one can drive that ∇q ≡ 0.
Besides, the given function f is the external force, g is the known applied current,
and Ψ is the heat source. Note that these equations contain the three dimensional
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Navier-Stokes equations as a special case (namely B ≡ 0 and θ ≡ 0), and the
mathematical theory is far from complete.

Denote by P := p + 1
2 |B|2 a modified pressure, in this paper we study the

following Voigt-regularization of (1) in inviscid and resistive case (i.e., ν = 0 and
µ ̸= 0).

ut − α2∆ut + (u · ∇)u+∇P − (B · ∇)B = βθ,(2a)

∇ · u = 0,(2b)

Bt − µ∆B + (u · ∇)B − (B · ∇)u+∇q = 0,(2c)

∇ ·B = 0,(2d)

θt − κ∆θ + u · ∇θ = 0,(2e)

(u,B, θ)|t=0 = (u0,B0, θ0),(2f)

where α2∆ut is the Voigt term and α > 0 is a regularization parameter. Moreover,
when α = 0, we formally retrieve (1) by adding forcing terms to (2a), (2c) and (2e),
and reintroducing a viscous term ν∆u to the right-hand side of (2a).

The Voigt (also written Voight) term was originally proposed by Voigt in [7] for
viscoelastic fluids. Viscoelasticity is the property of a material that, under stress
and deformation, exhibits both viscous and elastic characteristics. Unlike the Kelvin
stress-strain relation [8], Voigt has derived a system of equations that governs the
behavior of elastic solids with viscous properties, which is known today as the
Kelvin-Voigt equations [7]. In [9], the Navier-Stokes-Voigt (NSV) equations were
firstly introduced by Oskolkov as a model of Kelvin-Voigt fluids in which α denotes
a material parameter connected to a characteristic length of viscoelastic effects.
The authors also pointed out that the NSV equations have a real physical sense,
and describe the flow of a viscous incompressible Newtonian fluid which requires
α2

ν units of time in order to be set in motion under the action of a suddenly applied
force. The NSV equations were proposed by Cao et al. [10] as a regularizaion of the
Euler equations and Navier-Stokes equations which suggested a smaller resolution
requirement in large scale computations.

In the last several decades, many analyses and applications regarding the Voigt
regularization have been studied (see, e.g., [11, 12, 13, 14, 15, 16, 17]). The Voigt
regularization enjoys a feature that it is inviscid and does not require any artificial
boundary conditions to prove the global existence and uniqueness of strong solu-
tions [10]. It is also simpler than the nonlinear viscosity model of Ladyzhenskaya
[18] and Smagorinsky [19]. Due to these benefits, the ability to adapt an existing
CFD code to the Voigt regularization without intrusion has great interest. In [20],
Kuberry et al. proposed a Voigt regularization algorithm for the Navier-Stokes e-
quations. Numerical tests show that the Voigt regularization algorithm on a coarse
mesh produces good approximations to higher Reynolds number. Later on, Layton
and Rebholz [21] found that the regularization parameter α has effect of slowing the
temporal evolution; that is, compared to the usual solutions of the Navier-Stokes
equations, the NSV approximations have a longer relaxation time and damped ef-
fects decay more slowly. The statistical properties of the NSV model have also
been investigated computationally, using a phenomenological model of turbulence
known as the Sabra shell model [22]. The results indicate that the NSV model may
capture important statistical features of the Navier-Stokes equations, and therefore
give motivation for it to be investigated for use in numerical simulations. Further-
more, in the context of numerical computations, the NSV system appears to have
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