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MIXED VIRTUAL ELEMENT METHOD FOR LINEAR
PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS

MEGHANA SUTHAR AND SANGITA YADAV

Abstract. This article develops and analyses a mixed virtual element scheme for the spatial
discretization of linear parabolic integro-differential equations (PIDEs) combined with backward
Euler’s temporal discretization approach. The introduction of mixed Ritz-Volterra projection
significantly helps in managing the integral terms, yielding optimal convergence of order O(h*+1)
for the two unknowns p(«,t) and o(x,t). In addition, a step-by-step analysis is proposed for the
super convergence of the discrete solution of order O(h**2). The fully discrete case has also been
analyzed and discussed to achieve O(7) in time. Several computational experiments are discussed
to validate the proposed schemes computational efficiency and support the theoretical conclusions.
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1. Introduction

Mathematical models for solving the electrical circuit problems specified by the
Kirchhoff voltage laws [34], for a disease transmitted through the movement of
contagious individuals [29], heat flow in a substance with memory [30], etc., give
rise to the linear integro-differential equations. With consideration for the diverse
array of applications of these equations across various domains, our focus lies in
the exploration of PIDEs of the following form:

(1)
pe(x,t) =V - (a(m)Vp(:L’,t) —/0 b(a:;t,s)Vp(az,s)ds) = f(xz,t) (x,t) € D x (0,T],

p(z,t) =0 (x,t) € 0D x (0,17,
p(x,0) =po(x) x€D.

Here, D C R? is a bounded polygon domain having 9D as the boundary; fur-

thermore, the interval [0, 7] represents a finite time span. This article intends to

introduce and examine the mixed virtual element method (VEM) concerning PIDEs

(1), with the primary goal of studying the effect of time discretization on virtual

element solution. For our analysis, we would require the assumptions listed below

on the coefficients and the function f:

H.1 the coefficient a(x) is bounded, positive i.e. a(x) > po > 0, and smooth
enough,

H.2 the coefficient b(x;t, s) and its derivative b(x;t, s), bs(z;t, s) are real-valued,
bounded, and smooth,

H.3 the function f is real-valued and smooth enough.

In literature, various approaches have been made to obtain the numerical solution
to these equations and related problems, such as the finite element method (FEM)
[23, 14], finite volume method [16], VEM [40], least-square Galerkin method [24],
hp-local discontinuous Galerkin method [32], spectral method [19], HDG method
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[26] etc. Further, by extending these ideas in [31, 12, 20], fully discrete schemes were
proposed in which discretization of time is implemented using implicit finite differ-
ence schemes. The reason for employing finite element scheme and their variants
is the computational efficiency and well-established theory of these methods. We
stress that polygonal meshes have many benefits: greater flexibility in the meshing
of arbitrary geometries, better accuracy in the numerical solution over that obtain-
able using triangular and quadrilateral meshes on a given nodal grid, and many
more, see [36]. To deal with polygonal meshes, VEM was introduced in [1] and is
very much appreciated by the scientific community. A detailed study shows that
this method can be considered as a generalization of the standard FEM over general
polygonal and polyhedral meshes as the convergence analysis of this method can be
placed within the structure of the FEM, which is well developed in the literature.
In general, VEM has been successfully applied for an approximate estimation of
various partial differential equations; for recent developments and applications of
this method, we refer to [38, 39, 6, 2, 38] and references within.

One of our concerns in (1) is determining the flux or velocity in addition to
the pressure; the typical Galerkin method yields a loss of precision because it is
estimated from the approximated solution via post-processing. The mixed methods,
on the other hand, provide a direct estimate of this physical quantity and lead to
locally conservative solutions. Another advantage of using a mixed technique here
is the ability to introduce one more unknown of physical importance, which may be
computed directly without adding any new sources of error. Mixed VEM has been
effectively employed to approximate a number of partial differential equations; see
[9, 8, 10, 21, 11, 22] and references therein for details. Here, we introduce o (x,t),
defined by

(2) o(x,t) = a(z)Vp(x,1t) _/0 b(x;t,s)Vp(x,s)ds,
and rewrite (1) as:

(3) pt(w7t) —V-a(a:,t) = f($7t)'

The meaning of this independent variable ‘o’ is velocity field while discussing flow
in porous media, whereas (3) expresses a mass balance in any subdomain of D,
see[35]. So, the mixed formulation for this setting simultaneously approximates
the pressure and the velocity field while maintaining the underlying local mass
conservation. Since there is an integral term in (2) which involves Vp, we introduce
a new kernel known as the resolvent kernel to deal with this integral term. This
formulation has been explored in [35, 17, 18] for the semi-discrete formulation and
non-smooth initial data, but the fully-discrete case has not been explored yet for
this formulation to the best of our knowledge.

For the mixed variational formulation corresponding to (2), we will use the re-
solvent kernel, applicable to any Volterra integral equation of the second kind [33],
which takes the form:

(4) X(t)=F()+ /0 K(t,s)X(s)ds.

The resolvent kernel for (4) can be expressed as:

X(t)=F() +/O R(t,s)F(s)ds.



