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A HIGH ORDER UNFITTED FINITE ELEMENT METHOD FOR

TIME-HARMONIC MAXWELL INTERFACE PROBLEMS

ZHIMING CHEN, KE LI, MAOHUI LYU, AND XUESHAUNG XIANG

Abstract. We propose a high order unfitted finite element method for solving time-harmonic

Maxwell interface problems. The unfitted finite element method is based on a mixed formulation
in the discontinuous Galerkin framework on a Cartesian mesh with possible hanging nodes. The

H2 regularity of the solution to Maxwell interface problems with C2 interfaces in each subdomain

is proved. Practical interface-resolving mesh conditions are introduced under which the hp inverse
estimates on three-dimensional curved domains are proved. Stability and hp a priori error estimate

of the unfitted finite element method are proved. Numerical results are included to illustrate the

performance of the method.
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1. Introduction

Let Ω ⊂ R3 be a bounded domain with a Lipschitz boundary Σ. We consider in
this paper the following time-harmonic Maxwell interface problem

∇× (µ−1∇×E)− k2εE = J , div (εE) = 0 in Ω,(1)

[[E × n]]Γ = 0, [[(µ−1∇×E)× n]]Γ = 0, [[εE · n]]Γ = 0 on Γ,(2)

E × n = g × n on Σ,(3)

where J ∈ L2(Ω) with divJ = 0 in Ω and g×n ∈H3/2(Σ). Here and throughout
the paper, for any Banach space X, we denote X = X3 and ‖ · ‖X both the norms
of X and X.

We assume the domain Ω is divided by a C2 interface Γ into two subdomains so
that Ω = Ω1 ∪ Γ ∪ Ω2 and Ω1 is strictly included in Ω. For simplicity, we assume
the relative permeability µ and the relative permittivity ε are piecewise constants
µ = µ1χΩ1

+µ2χΩ2
, ε = ε1χΩ1

+ ε2χΩ2
, where for i = 1, 2, χΩi is the characteristic

function of Ωi, and µi, εi are positive constants. k = ω
√
ε0µ0 is the wave number

of the vacuum with ω > 0 the angular frequency and µ0, ε0 the permeability and
permittivity of the vacuum. With this notation, J = ikµ0Ja with Ja being the
applied current density. We denote by n both the unit outer normal to Ω1 on Γ
and the unit outer normal to Ω on Σ. [[v]]Γ := v|Ω1

− v|Ω2
stands for the jump of a

function v across the interface Γ.
The existence and uniqueness of the weak solution to the problem (1)-(3) are

well studied in the literature (see, e.g., [32]). The singularity and regularity of
the solution with smooth µ, ε in polyhedral and smooth domains are considered
in [21, 23]. The singularity of the solution of the Maxwell interface problems with
polyhedral interfaces is studied in [22]. To the best of the authors’ knowledge, the
H2 interface regularity of the solution to the Maxwell interface problem with smooth
interfaces is missing in the literature. In this paper, we first prove the H2 regularity
of the solution to (1)-(3) in each subdomain Ω1,Ω2. Our proof is based on the
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H(curl)-coercive Maxwell equations which is different from the H(curl)∩H(div )-
coercive Maxwell equations used in [21, 22, 23]. This new regularity result will be
used in our finite element convergence analysis based on the Schatz argument in
dealing with the indefiniteness of the time-harmonic Maxwell equations.

There exists a large literature on finite element methods for solving the time-
harmonic Maxwell equations after the seminar work [45]. We refer to [32, 44] for the
study of the H(curl)-conforming h-methods, [25, 42] for the hp-methods, and [46,
36, 37] for the discontinuous Galerkin (DG) methods. The common assumptions in
these studies are that the domains are polyhedral and the material interfaces are
piecewise flat so that conforming tetrahedral or hexahedral meshes can be used.
Much less studies have been devoted to finite element methods solving Maxwell
equations on domains with curved boundary. We refer to [27, 33, 43] for body-
fitted finite element methods, [11] for the isogeometric analysis, and [15] for the
low order unfitted finite element method. We remark that the design of body-fitted
high-order finite element methods depends on nonlinear element transforms from
the reference element to the elements with curved boundary [6, 43]. It may be
challenging to satisfy the conditions on the nonlinear element transforms which
depend on the geometry of the interface or boundary in practical applications.

The original motivation of unfitted finite element methods in the DG framework
is to release the time-consuming work of constructing shape regular meshes for
domains with complex geometry. It turns out that the unfitted finite element
methods also provide a natural way to design high-order methods without resorting
to the nonlinear element transforms. Since the seminal work [31] for elliptic interface
problems, considerable progress of the unfitted finite element methods has been
made in the literature [13, 51, 39, 30, 4, 52, 38, 16]. The small cut cell problem,
that is, the intersection of the domain and the elements can be arbitrarily small or
anisotropic, can be solved by appropriate techniques of stabilization [13, 51, 39] or
merging small cut cells with surrounding large elements [30, 4, 12, 16]. We refer
to [16, 17] for further references and other approaches of unfitted finite element
methods.

In [16] an adaptive high-order unfitted finite element method in two dimension
is proposed for elliptic interface problems in which the hp a priori and a posteriori
error estimates are derived based on novel hp domain inverse estimates and the
concept of interface deviation. The interface deviation is a measure that quantifies
the resolution of the geometry by the mesh. In [17], for any C2 interface, a reliable
algorithm is constructed to merge small interface elements with their surrounding
elements to generate an induced mesh whose elements are large with respect to
both domains, which solves the small cut cell problem. It is also shown in [17] that
the exponential growth of the condition number of the stiffness matrix on the finite
element approximation order, which is observed in the literature (e.g., [48, 17]), can
be controlled by reducing the interface deviation. Therefore, arbitrarily high order
unfitted finite element methods on automatically generated Cartesian meshes for
solving elliptic interface problems can be achieved for arbitrarily shaped C2 smooth
interfaces.

The main purpose of this paper is to extend the high order unfitted finite el-
ement method for two-dimensional elliptic interface problems in [16] to solve the
time-harmonic Maxwell equations (1)-(3). We characterize and quantify the mesh
resolution of the geometry in two steps. We first introduce the concept of proper
intersection of the interface and boundary to the elements and the concept of large
element in three dimension, which allow us to show that each large element is a


