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VARIABLE TIME STEP METHOD OF DAHLQUIST, LINIGER
AND NEVANLINNA (DLN) FOR A CORRECTED
SMAGORINSKY MODEL

FARJANA SIDDIQUA AND WENLONG PET*

Abstract. Turbulent flows strain resources, both memory and CPU speed. A family of second-
order, G-stable time-stepping methods proposed by Dahlquist, Liniger, and Nevanlinna (the DLN
method) has great accuracy and allows large time steps, requiring less memory and fewer FLOPS.
The DLN method can also be implemented adaptively. The classical Smagorinsky model, as an
effective way to approximate a resolved mean velocity, has recently been corrected to represent
a flow of energy from unresolved fluctuations to the resolved mean velocity. In this paper, we
apply the DLN method to one corrected Smagorinsky model and provide a detailed numerical
analysis of the stability and consistency. We prove that the numerical solutions under arbitrary
time step sequences are unconditionally stable in the long term and converge in second order.
We also provide error estimates under certain time-step conditions. Numerical tests are given
to confirm the rate of convergence and also to show that the adaptive DLN algorithm helps to
control numerical dissipation so that a flow of energy from unresolved fluctuations to the resolved
mean velocity is visible.
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1. Introduction

Herein we give an analysis of the method of Dahlquist, Liniger, and Nevanlinna
[19] (the DLN method) for the corrected Smagorinsky model (CSM henceforth) [59]
with variable time steps. Time adaptivity (adjusting time steps based on certain
criteria) is an effective way to balance accuracy and time efficiency.

Eddy viscosity (EV) models are the most common approaches to depict the aver-
age turbulent flow of Navier-Stokes equations (NSE). Various eddy viscosity models
in practical settings are proposed for analytical and numerical study [4,21,22,28,29].
In large eddy simulation (LES), backscatter is the study and measurement of the
energy transfer process from small, unresolved turbulent scales to large, resolved
scales in a computational fluid dynamics (CFD) simulation. Unfortunately, most
EV models have difficulties in simulating backscatter or complex turbulent flow not
at statistical equilibrium due to the neglect of the intermittent energy flow from
fluctuations back to means. To overcome this defect, Jiang and Layton [33] derive
a new eddy viscosity model from an equation describing the evolution of variance in
a turbulent flow. Rong, Layton, and Zhao [57] extended the usual Baldwin-Lomax
model so that the new model can account for statistical backscatter' without artifi-
cial negative viscosities. Recently, Siddiqua and Xie [59] have corrected the classical
Smagorinsky model [60] with no new fitting parameters to reflect a flow of energy
from unresolved fluctuations to means in the CSM. Most recently, Dai, Liu, Liu,
Jiang, and Chen [18] proposed a new dynamic Smagorinsky model by an artificial
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neural network for the prediction of outdoor airflow and pollutant dispersion. In the
report, we give a detailed numerical analysis of the CSM [59] under arbitrary non-
uniform time grids. Given bounded flow domain Q C R? (d = 2,3), time interval
[0,T7], and the prescribed body force f(x,t), the pair (w(x,t),q(z,t)) approximate
an ensemble average pair of velocity and pressure of Navier-Stokes solutions (u, D)
and is governed by the following system

(1)
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This is an eddy viscosity model. Constant Cs ~ 0.1 is suggested by Lilly [42]. ¢
is a length scale (or grid-scale) and u is a constant from Kolmogorov-Prandtl re-
lation [38,54]. v is the kinematic viscosity and vy = (C,s6)%|Vw| is the turbulent

viscosity. || is the Euclidian norm on R%. The viscous term V-((C,0)?|Vw|Vw) in
(1) comes from the classic Smagorinsky model and the kinetic energy penalization
cis?

—=:-Awy in (1) is newly added for the CSM. All other terms in (1) are from stan-
dard Navier-Stokes equations (NSE). In [59], the CSM model derivation and some
basic properties of the CSM are developed, and two algorithms for its numerical
simulation are proposed. However, the significant backscatter of model dissipa-
tion is not observed in specific examples except for Linearized Crank-Nicolson time
discretization [59, page 21-22]. Besides that, constant time discretization in their
algorithms (Linearized Crank-Nicolson time-stepping scheme) excludes the use of
time adaptivity since the solution pattern (in terms of stability and convergence)
under extreme time step ratios is hard to expect!. Dahlquist, Liniger, and Nevan-
linna designed a one-parameter family of one-leg, second-order methods for evolu-
tionary equations [19]. This family of one-leg methods (For convenience, we call
this family the DLN method.) is proved to be G-stable (non-linear stable) under
any arbitrary time grids [14-16] and hence ideal choice for time discretization of
fluid models®. Herein we apply the fully discrete DLN algorithm (finite element
space discretization) for the CSM in (1) and present a complete numerical analysis
of the algorithm in Section 4. We prove that the numerical solutions on arbitrary
time grids are unconditionally long-term stable, and converge to exact solutions at
second order with moderate time step restrictions. Let {t,})_, be the time grids
on interval [0,T] and k,, = t, 41 — t, the local time step. w” and ¢" are numerical
approximations of velocity and pressure at time t,, of the CSM in (1) respectively on
certain finite element space with the diameter h. The fully discrete DLN algorithm

n [19], the linearized Crank-Nicolson scheme and applying to the problem 3/ (t) = A(t)y(t)
with Re(A(t)) < 0 and A(t2,) = 0. Under certain time step sequence (kn, = 7 and kan4+1 = 1/2),
the sequence of numerical solutions satisfy y2, = (—2)™yo, which implies the scheme is not stable.

2To the best of our knowledge, the DLN method is the only variable multi-step method which
is both non-linearly stable and second-order accurate.



