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FROM OBSTACLE PROBLEMS TO NEURAL INSIGHTS:

FEEDFORWARD NEURAL NETWORK MODELING OF ICE

THICKNESS

KAPIL CHAWLA, WILLIAM HOLMES, AND ROGER TEMAM

Abstract. In this study, we integrate the established obstacle problem formulation from ice sheet
modeling [1, 2] with cutting-edge deep learning methodologies to enhance ice thickness predictions,
specifically targeting the Greenland ice sheet. By harmonizing the mathematical structure with an

energy minimization framework tailored for neural network approximations, our method’s efficacy
is confirmed through both 1D and 2D numerical simulations. Utilizing the NSIDC-0092 dataset for
Greenland [22] and incorporating bedrock topography for model pre-training, we register notable
advances in prediction accuracy. Our research underscores the potent combination of traditional

mathematical models and advanced computational techniques in delivering precise ice thickness
estimations.
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1. Introduction

The melting of ice sheets, driven by climate change, is a topic of mounting
concern across various scientific disciplines. This phenomenon is pivotal for under-
standing the dynamic processes of Earth’s climate, particularly in regions such as
Greenland. The melting of Greenland’s ice sheet not only contributes to global sea
level rise but also provides insights into intricate climate interactions and feedback
loops. As such, mathematicians have developed complex models to delve deeper
into ice sheet dynamics. Among these models, obstacle problems [3] offer a unique
lens, presenting challenges in partial differential equations (PDEs). Over the years,
numerous numerical methods have been devised to address these challenges. Most
of these methods focus on providing approximation solutions to the weak variation-
al inequality. Techniques like the Galerkin least squares finite element method ([5],
[4], [6]), multigrid algorithm ([8], [7]), piecewise linear iterative algorithm [9], the
first-order least-squares method [10], the level set method [11], and the dynamical
functional particle method [12] have been employed with varying degrees of success.

In the wake of technological advancements, deep learning has emerged as a
promising tool in many scientific applications. It has recently gained significan-
t traction in solving differential equations and inverse problems ([13], [14], [15],
[16], [17], [18]). Despite this momentum, its application to variational inequalities
remains in its infancy. Some studies ([20], [21]) have innovatively applied deep
learning to the traditional obstacle problem, whereas others [19] have ventured into
using deep learning techniques for elliptic hemivariational inequalities. A common
observation, however, is that many of these studies prioritize computations over
theoretical insights.

With this backdrop, our paper endeavors to bridge this gap. We explore both
traditional ice-sheet models [1, 2] and introduce a computational approach using
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deep learning to address the obstacle problem, deriving inspiration from its varia-
tional form. A central theme of our work is to discern the influence of parameters
such as network size and training samples on the outcomes. Through rigorous
numerical experiments, we substantiate the efficacy of our proposed method.

This article is organized as follows: Section 2 introduces the mathematical formu-
lation of the model and elucidates the ice-thickness variational inequality. Section
3 sheds light on the energy minimization formulation. Section 4 delineates the ap-
proximation of the solution using fully connected feedforward deep neural networks,
detailing its architecture, universality as an approximator, and the composite loss
function tailored for optimal training and optimization. Section 5 showcases numer-
ical experiments for one and two-dimensional problems, accompanied by solution
visualizations and error analysis. Section 6 applies our model to data sourced from
Greenland. We wrap up in Section 7, offering a concise summary of our study’s
principal insights and findings.

2. Mathematical Formulation of the Model

In this section, we present the mathematical formulation of the model, which is
adapted from the work presented in [1, 2].

Let Rn denote the n-dimensional Euclidean space, equipped with the standard
Euclidean norm. A domain Ω in Rn is defined as a bounded and connected open
subset of Rn, whose boundary is Lipschitz continuous. Consider a subset Ω residing
within R2. For any point x = (x1, x2) contained within the closure of Ω, denoted as
Ω̄, we will utilize common mathematical operators without going into their detailed
definitions here.

The bedrock elevation is denoted by the function b : Ω̄ → R. It’s noteworthy
that a positive value of b represents elevations above sea level, while negative values
correspond to depths below the sea level.

Similarly, the elevation of the top surface of the ice sheet is characterized by the
function h : Ω̄ → R. It is imperative to emphasize that throughout the domain
Ω, h always maintains a value greater than or equal to b. A visual representation
of this relationship is provided in Figure 1. Consequently, the thickness of the ice,
denoted as H : h− b, consistently remains nonnegative throughout Ω̄. This insight
underscores the observation that studying changes in ice thickness is tantamount to
addressing an obstacle problem, where the bedrock acts as the primary constraint.

Figure 1. Cross-sectional view of an ice sheet with the respective
notation, based on Jouvet et al. (2012).

This particular constraint implies the existence of a free boundary. Let’s define

(1) Ω+ = {h > b} = {H > 0}


