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A DIFFERENCE VIRTUAL ELEMENT METHOD FOR THE
3D ELLIPTIC EQUATION WITH THE VARIABLE
COEFFICIENT ON GENERAL CYLINDRICAL DOMAINS

LULU LI, YINNIAN HE, AND XINLONG FENG

Abstract. In this paper, we present and analysis a difference virtual element method (DVEM) for
the three dimensional (3D) elliptic equation on general cylindrical domains. This method combines
the dimension splitting method and operator splitting technique to transform the virtual element
solution of 3D elliptic equation into a series of virtual element solution of 2D elliptic equation
based on (z,y) plane, where the central difference discretization is adopted in the z-direction.
This allows us to solve partial differential equations on cylindrical domains at the low cost in
mesh generation compared with 3D virtual element method. The H!-norm error estimation of
the DVEM is analysed in this paper. Finally, some numerical examples are performed to verify
the theoretical predictions and showcase the efficiency of the proposed method.
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1. Introduction

The development of the numerical methods for the 3D partial differential e-
quation on general polygonal (polyhedral) meshes has been drawn considerable
attention due to the extensive flexibility for the polygonal (polyhedral) meshes on
the mesh generation, mesh deformation, fracture, combination, topology optimiza-
tion, and mesh refinement and coarsening. In addition, the use of arbitrary-shape
meshes can have good flexibility in dealing with complex data features. With re-
gards to the spatial discretization, there exist many works devoted to treating the
general polygonal and polyhedral elements. These methods include the finite vol-
ume method [1, 2], weak Galerkin finte element method, mimetic finite difference
method [3] and the virtual element method (VEM) [4, 5, 6, 7].

The virtual element method was originally proposed in [8] to solve the Poisson
equation and later has been successfully applied to a variety of partial differential e-
quations such as convection diffusion equation, Allen-Cahn equation, Cahn Hilliard
equation. More recently, mixed VEM was proposed for solving the fluid flow prob-
lems, see the Stokes problem [9, 10], Brinkman problem [11, 12], Stokes-Darcy
problem [13, 14], Stokes complex in the VEM framework [15, 16], the magnetohy-
drodynamics problems [17] and the steady quasi-geostrophic equation of the ocean
[18]. Several studies have contributed to the development and refinement of VEM
for elliptic interface problems. For instance, Cao et al. [19] introduced immersed
virtual element methods for two-dimensional elliptic interface problems. Chen et
al. [20] focused on an interface-fitted mesh generator and virtual element methods
for elliptic interface problems. Goémez et al. [21] explored space-time virtual ele-
ments for the heat equation. Their work extended the concept of VEM to evolve
problems in time, which is particularly useful for capturing the temporal behavior
of interfaces. Tushar et al. [22] investigated virtual element methods for general
linear elliptic interface problems on polygonal meshes with small edges. Wang et
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al. [23] introduced a conforming virtual element method based on unfitted meshes
for the elliptic interface problem.

The finite difference method, as an important numerical method, plays a crucial
role in scientific calculating [24, 25, 26, 27]. However, the finite difference method
is not easy to discretize the complex domain,especially in high dimensional space.
Dimension splitting method [28, 29, 30, 31, 32, 30] and operator splitting method
are two popular strategies to reduce the high dimensional problem into a series of
low-dimensional problems. Based on the idea of dimension splitting method and
operator splitting technique, He and Feng proposed the difference finite element
method (DFEM) for solving 3D partial differential equations. In [33], the author
used the DFEM based on P;-P; conforming elements to solve the 3D Poisson e-
quation and obtained the H' superconvergence results of this method by quadratic
interpolation. In addition, Feng and his collaborators applied the DFEM to solve
the 3D heat conduction equation [34] and obtained the H!-superconvergence re-
sults. Later in [35, 36, 37] , they proceeded the DFEM to solve the 3D continuous
incompressible Stokes equations and Navier-Stokes equations and obtained the ex-
istence, uniqueness and stability of the finite element solution as well as the optimal
convergence.

For Lz > 0, let Q = w x (0, L3) where w C R%. We consider the following 3D
elliptic equation with Dirichlet boundary condition:

{ -V (K%u) = —0,,u— V- (A(z,y)Vu) = f in Q,

1
M u=0 on 0f,

where V = (8,,0,,0.) = (V,8.) and A € [L=(Q)]?*3 is the symmetric matrix-

value function of form
1 _ (Az,y) 0
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Here A(z,y) € [L>®(w)]?*? = <ﬁ;g§:z§ ﬁ;ig:gg) is assumed to be uniformly

elliptic and continuous in the sense that there exist two positive constants 0 < ay, <
o < 400 such that

2
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for any & = (&1,6)" € R

This manuscript introduces a novel DVE approach grounded in lower-order ele-
ments for resolving 3D elliptic equations. By preserving the virtues of the virtual
element method, the computational demands of intricate 3D scenarios are substan-
tially reduced. The underlying principle of this DVE strategy involves utilizing
finite difference method discretization in the z-direction to convert the 3D model
into a collection of 2D elliptic equations, which are then approximated using the
low-order virtual element method in the (x,y) plane. Consequently, the numerical
solution to a complex 3D problem can be obtained by combining the numerical
solutions of several 2D problems. Although the dimension of the coefficient matrix
presented by the difference virtual element method remains unchanged, the stiffness
matrix can be reused at each z-grid point without the need for reassembly, thereby
conserving computational resources.

The structure of this article is as follows. In the next section, we introduce the
virtual element space and the method of virtual elements in the 2D domain. In



