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A SELECTIVELY RELAXED ALTERNATING POSITIVE

SEMIDEFINITE SPLITTING PRECONDITIONER FOR THE

FLUX-LIMITED MULTI-GROUP RADIATION DIFFUSION

EQUATIONS

XIAOQIANG YUE, RONG ZHOU, CHUNYAN CHEN, XIAOWEN XU*, AND SHI SHU*

Abstract. In this article, we concentrate on the fast numerical computation of the radiation
energy densities together with electron and ion temperatures of three-dimensional multi-group

radiation diffusion equations, which is temporally discretized with the adaptive backward Euler-
ian scheme, linearized iteratively via the method of frozen coefficients and spatially approximated
through a cell-centered finite volume discretization on the adaptive unstructured computational

meshes. We present, analyze and implement an alternating positive semidefinite splitting precon-
ditioning technique with two selective relaxations and algebraic multigrid subsolves, and provide
an algebraic quasi-optimal selection approach to determine the involved parameters. Our parallel
implementation is based on the software package jxpamg and the preconditioned flexible restarted

generalized minimal residual solver has been examined by running realistic simulations of hy-
drodynamic instability on the Tianhe-2A supercomputer to demonstrate its numerical robustness,
computational efficiency, parallel strong and weak scalabilities, and the competitiveness with some
existing popular monolithic and block preconditioning strategies.
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1. Introduction

On a spherically symmetrical bounded geometry, the flux-limited multi-group
radiation diffusion (MGD) equations



∂Eg

∂t
= ∇ · (Dg(Eg)∇Eg) + c(σBgBg(TE)− σPgEg) + Sg, g = 1, · · · , G,

ρcE
∂TE

∂t
= ∇ · (DE(TE)∇TE)− c

G∑
g=1

(σBgBg(TE)− σPgEg) + wIE(TI − TE),

ρcI
∂TI

∂t
= ∇ · (DI(TI)∇TI)− wIE(TI − TE)

(1)

are the simplest and most extensively used approximation to the spatio-temporal
orientation- and frequency-dependent thermal radiation transport equations, which
compactly describe the propagations of high-energy photons in a physical system
and the interactions with electrons directly and ions indirectly. It must be noticed
that the thermal radiation transport process occurs in various branches of physics,
such as the optical remote sensings, massive star formations and inertial confine-
ment fusion experiments. The nonlinear PDE system (1) looks for the radiation
energy density functions E1, · · · , EG, the electron temperature function TE and
the ion temperature function TI for some given density of medium ρ, the specific
heat capacities cE and cI , the nonlinear radiation diffusion coefficient Dg(Eg), the
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scattering and absorption coefficients σBg and σPg, the source item Sg and the
electron scattering energy density Bg(TE) for the photon frequency group index
g = 1, · · · , G, the nonlinear thermal-conductivity coefficients DI(TI) and DE(TE)
together with the energy transfer coefficient wIE . In most situations, the analytic
solution of problem (1) could not be available for arbitrary geometries and param-
eters or this nonlinear PDE system may not be directly solvable [33]. As a result,
it needs to be discretized in the temporal dimension, at first, with the adaptive
backward Eulerian scheme, yielding a series of semi-discrete nonlinear systems of
the form



−∇ · (Dg(Eg)∇Eg) + (
1

∆tk+1
+ cσPg)Eg − cσBgBg(TE) = Sg +

1

∆tk+1
E(k)

g ,

g = 1, · · · , G,

−∇ · (DE(TE)∇TE) + (
ρcE

∆tk+1
+ wIE)TE + c

G∑
g=1

σBgBg(TE)

− c

G∑
g=1

σPgEg − wIETI =
ρcE

∆tk+1
T

(k)
E ,

−∇ · (DI(TI)∇TI) + (
ρcI

∆tk+1
+ wIE)TI − wIETE =

ρcI
∆tk+1

T
(k)
I

(2)

at the (k + 1)-th time level, where ∆tk+1 = tk+1 − tk is the actual time-step size
and each continuous item with superscript (k) represents the correlative approxi-
mation at the preceding time level. Then, the nonlinear semi-discrete system (2) is
linearized iteratively through the method of frozen coefficients [24], where the term
Bg(TE) is approximated by its first-order Taylor series expansion

Bg(TE) ≈ B(δ)
g +

(
∂Bg

∂TE

)(δ)

(TE − T
(δ)
E )

due to its tanglesome nonlinearity while the others are replaced by their constant

(0th-order) Taylor approximations at E
(δ)
g , T

(δ)
I and T

(δ)
E . We immediately obtain

a sequence of coupled systems of second-order linear reaction-diffusion equations as
follows



−∇ · (D(δ)
g ∇Eg) + (

1

∆tk+1
+ cσ

(δ)
Pg)Eg − cσ

(δ)
Bg

(
∂Bg

∂TE

)(δ)

TE

= S(δ)
g +

1

∆tk+1
E(k)

g + cσ
(δ)
Bg

[
B(δ)

g −
(
∂Bg

∂TE

)(δ)

T
(δ)
E

]
, g = 1, · · · , G,

−∇ · (D(δ)
E ∇TE) +

[
ρc

(δ)
E

∆tk+1
+ w

(δ)
IE +

G∑
g=1

cσ
(δ)
Bg

(
∂Bg

∂TE

)(δ)
]
TE

−
G∑

g=1

cσ
(δ)
PgEg − w

(δ)
IETI =

ρc
(δ)
E

∆tk+1
T

(k)
E −

G∑
g=1

cσ
(δ)
Bg

[
B(δ)

g −
(
∂Bg

∂TE

)(δ)

T
(δ)
E

]
,

−∇ · (D(δ)
I ∇TI) + (

ρc
(δ)
I

∆tk+1
+ w

(δ)
IE)TI − w

(δ)
IETE =

ρc
(δ)
I

∆tk+1
T

(k)
I ,

(3)


