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A CONFORMING DISCONTINUOUS GALERKIN FINITE

ELEMENT METHOD FOR SECOND-ORDER PARABOLIC

EQUATION
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Abstract. The conforming discontinuous Galerkin (CDG) finite element method is an innovative

and effective numerical approach to solve partial differential equations. The CDG method is based
on the weak Galerkin (WG) finite element method, and removes the stabilizer in the numerical
scheme. And the CDG method uses the average of the interior function to replace the value of
the boundary function in the standard WG method. The integration by parts is used to construct

the discrete weak gradient operator in the CDG method. This paper uses the CDG method to
solve the parabolic equation. Firstly, the semi-discrete and full-discrete numerical schemes of the
parabolic equation and the well-posedness of the numerical methods are presented. Then, the

corresponding error equations for both numerical schemes are established, and the optimal order
error estimates of H1 and L2 are provided, respectively. Finally, the numerical results of the CDG
method are verified.
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1. Introduction

The parabolic equation is an essential class of equations in partial differential
equations. Its unique concept and properties make it play a huge role in physics
and mathematics and have significant theoretical value. Many problems can be
described by parabolic equations in life, for example, heat conduction of objects,
flow problems of porous media, and diffusion problems of pollutant concentration. It
is challenging to obtain analytical solutions on these practical problems, so scholars
began to study their numerical solutions, which provides a solid theoretical basis
for solving practical problems.

In this paper, we consider the initial-boundary value problems for second-order
parabolic equation: Find u satisfies ut −∇ · (a∇u) = f, x ∈ Ω, t ∈ J,

u = 0, x ∈ ∂Ω, t ∈ J,
u(·, 0) = ψ, x ∈ Ω,

(1)

where J =
[
0, T

]
, T > 0, Ω ⊂ R2 is a polygon domain, and the boundary ∂Ω

is Lipschitz continuous. And the source term f(x, t) ∈ L∞
(
0, T ;L2(Ω)

)
and the

initial value ψ ∈ H2(Ω). Assume that a(·)2×2 ∈ [L∞(Ω)]2×2 is a symmetric matrix-
valued function, which satisfies

C1η
T η ≤ ηTaη ≤ C2η

T η, ∀η ∈ R2,

here C1 and C2 are two positive constants with 0 < C1 < C2 ≪ ∞.
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The variational formulation of the parabolic equation (1) is to find u ∈ L2
(
0, T ;

[H1
0 (Ω)]

d
)
, such that{

(ut, v) + (a∇u,∇v) = (f, v), ∀ v ∈ H1
0 (Ω), t ∈ J,

u(·, 0) = ψ.
(2)

The Sobolev spaces are defined as follows:

H1(Ω) :=
{
v|v ∈ L2(Ω),∇v ∈ [L2(Ω)]2

}
,

H1
0 (Ω) :=

{
v|v ∈ H1(Ω), v|∂Ω = 0

}
,

L2(0, T ;V ) :=

{
v | v(·, t) ∈ V, ∀t ∈

[
0, T

]
,

∫ T

0

∥v(·, t)∥2V dt <∞

}
,

here V is a Sobolev space with a norm ∥ · ∥V .
There are many numerical methods to solve the parabolic equation, such as the

finite element method (FEM) [14, 33], the nonconforming finite element method
(NC-FEM) [31], the discontinuous Galerkin (DG) finite element method [3, 13], the
virtual element method [15, 32], the weak Galerkin (WG) finite element method
[1, 4, 5, 21], etc. In this paper, we propose a conforming discontinuous Galerkin
(CDG) finite element method to solve the parabolic equation.

The CDG method is based on the WG method [2, 6, 7, 16, 17, 22]. Its main
idea is to use the discontinuous polynomial as the approximate function and in-
crease the degree of the polynomial for calculating the weak differential operators.
Using higher-order degree polynomials can effectively ensure the weak continuity
of discontinuous functions over element boundaries and substantially reduce com-
putational complexity without altering the dimensions of the stiffness matrix and
the global sparsity. In contrast to the WG method, the CDG method uses the
averages of the interior functions to replace the boundary functions, reducing the
number of boundary degrees of freedom. It has the advantages of being easy to
construct the finite element space and the numerical scheme. In addition, the CDG
numerical scheme is amenable to parallel computing, thereby effectively mitigating
the computational overhead. Recently, the CDG method has garnered considerable
scholarly attention and has been successfully used to solve the second-order elliptic
problems [25–27], Stokes problems [10, 28], Biharmonic problems [29, 30], elliptic
interface problems [23], linear elasticity interface problems [24], and so on.

In this paper, we use the CDG method to solve the initial-boundary value prob-
lems for second-order parabolic equation. In the CDG scheme, the approximation
of the function is achieved through the employment of the discontinuous k-th degree
polynomial. Concomitantly, the stabilizer terms within the numerical method are
eliminated by increasing the polynomial degree for calculating the weak differential
operators. The numerical schemes are presented for the semi-discrete spatial case,
wherein only space is discretized, and the full-discrete case, which involves the dis-
cretization of time and space. Subsequently, the error equations for semi-discrete
and full-discrete schemes are presented. Additionally, optimal order error estimates
in the H1 and L2 norms are derived.

An outline of this paper is as follows. In Section 2, we propose a semi-discrete
CDG scheme for the parabolic equation (1). In Section 3, the full-discrete CDG
scheme for the parabolic equation (1) is established. In Section 4, we derive the
optimal order error estimate for the semi-discrete CDG scheme and full-discrete
CDG scheme. In Section 5, numerical results are presented to validate the accuracy


