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A CLASS OF RUNGE-KUTTA METHODS FOR BACKWARD

STOCHASTIC DIFFERENTIAL EQUATIONS

XIAO TANG1,∗ AND JIE XIONG2

Abstract. In this paper, we introduce a class of Runge-Kutta (RK) methods for backward
stochastic differential equations (BSDEs). The convergence rate is studied and the corresponding

order conditions are obtained. For the conditional expectations involved in the methods, we design
an approximation algorithm by combining the characteristics of the methods and replacing the
increments of Brownian motion with appropriate discrete random variables. An important feature

of our approximation algorithm is that interpolation operations can be avoided. The numerical
results of four examples are presented to show that our RK methods provide a good approach for
solving the BSDEs.
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1. Introduction

Consider the backward stochastic differential equation (BSDE) of the integral
form

(1) y(t) = φ(W (T )) +

∫ T

t

f(s, y(s), z(s)) ds−
∫ T

t

z(s) dW (s), t ∈ [0, T ],

where f : R × Rd × Rd×m −→ Rd is a Lipschitz-continuous function, W (t) =
(W 1(t),W 2(t), · · · ,Wm(t)) is an m-dimensional Wiener process supported by a
filtered probability space (Ω,F ,P, {F}0≤t≤T ), and the function φ : Rm −→ Rd has
continuous and bounded first derivatives.

The existence and uniqueness of the solution of (1) was first proved in [12].
Moreover, by [13] and [14], we know that the solution of (1) can be rewritten as

(2) y(t) = u(t,W (t)), z(t) = ∇u(t,W (t)), t ∈ [0, T ],

where ∇u is the gradient of u(t, x) with respect to the variable x, and u(t, x) is the
solution of the terminal value Cauchy problem

(3)


∂u

∂t
+

1

2

m∑
i=1

∂2u

∂x2
i

+ f(t, u,∇u) = 0, t ∈ [0, T ), x ∈ Rm,

u(T, x) = φ(x), x ∈ Rm.

The smoothness of the solution u depends on the smoothness of the functions f and

φ (see, e.g., [6, 24]). Specifically, if f ∈ Ck,2k,2k
b , φ ∈ C2k+ϵ

b , k ∈ Z+, ϵ ∈ (0, 1),

then we have u ∈ Ck,2k
b , where Ck,2k,2k

b denotes the set of continuously differentiable

functions ϕ(t, y, z) with uniformly bounded partial derivatives ∂l0
t ∂l1

y ∂l2
z ϕ for 2l0 +

l1 + l2 ≤ 2k, Ck,2k
b denotes the set of functions ϕ(t, x) with uniformly bounded

partial derivatives ∂l0
t ∂l1

x ϕ for 2l0 + l1 ≤ 2k, and C2k+ϵ
b denotes the set of functions

ϕ(x) such that ∂l
xϕ, l ≤ 2k are uniformly bounded and ∂2k

x ϕ is Hölder continuous
with index ϵ.
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As is well known, it is very difficult to find the analytic solution to most BSDEs.
Therefore, developing numerical methods for solving BSDEs is becoming highly
desired in practical applications. Up to now, many works on numerical methods of
the BSDEs or their extensions forward-backward stochastic differential equations
(FBSDEs) have been done. The methods in [5, 8, 9, 10, 11] are developed based
on the relation between the BSDEs and the corresponding Cauchy problem. The
methods in [3, 15, 16, 19, 20] are developed directly based on the BSDEs.

In recent years, there has been much interest in developing numerical methods
based directly on the BSDEs. In particular, the linear multistep methods for solving
ordinary differential equations (ODEs) have been successfully extended to solving
BSDEs (see, e.g., [1, 17, 18, 21, 23, 25]). However, Runge-Kutta (RK) methods,
as another type of important numerical methods for the ODEs, are rarely used to
solve the BSDEs. As far as we know, there are currently only two references that
have studied RK methods for the BSDEs [2, 4]. The authors of [4] studied a specific
second-order RK method. The authors of [2] introduced a class of RK methods and
provided rigorous convergence analysis results.

In the present paper, we will introduce a class of RK methods for the BSDEs (1).
The order conditions up to third order are obtained for our RK methods. Based
on the order conditions, we give two specific explicit RK methods. Combining the
characteristics of our RK methods and replacing the increments of Brownian mo-
tion with some appropriate discrete random variables, we design an approximation
algorithm for the conditional expectations involved in the RK methods. Our RK
methods is different from the RK methods proposed in [2]. The main difference lies
in the calculation of the internal stages about variable z (see method (7)), which is
more conducive to design the approximation algorithm for the conditional expecta-
tions (see Remark 1). In addition, no interpolation operations are required for our
approximation algorithm of the conditional expectations. What’s more, the ideal
of our approximate algorithm can be applied to many other methods for solving
the BSDEs (see below).

This paper is organized as follows. In section 2, we introduce our RK methods.
We study the convergence rate and obtain the corresponding order conditions in
section 3. In section 4, the approximation algorithm for the conditional expectations
is presented. Finally, we present some numerical results to verify our theoretical
results.

2. RK methods for the BSDEs

Under the uniform time stepsize h = T
N , tn = nh, n = 0, 1, 2, · · · , N (N is a

given positive integer), we have

(4)


y(tn) = y(tn+1) +

∫ tn+1

tn

f(s, y(s), z(s)) ds−
∫ tn+1

tn

z(s) dW (s), n < N,

y(tN ) = φ(W (T )).

Inspired by [19, 20], for equation (4), we can establish the following two ordinary
differential reference equations

(5) y(tn) = Etn

[
y(tn+1) +

∫ tn+1

tn

f(s, y(s), z(s)) ds
]
,


