
INTERNATIONAL JOURNAL OF c⃝ 2025 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 22, Number 6, Pages 801–823 doi: 10.4208/ijnam2025-1035

A FINITE DIFFERENCE METHOD FOR AN INTERFACE

PROBLEM WITH A NONLINEAR JUMP CONDITION

SO-HSIANG CHOU, CALEB KHAEMBA, AND ALICE WACHIRA

Abstract. We propose a finite difference approach to numerically solve an interface heat equa-
tion in one dimension with discontinuous conductivity and nonlinear interface condition. The 
discontinuous physical solution is sought among the multiple solutions of the nonlinear equation. 
Our method finds the approximate jump of the exact solution by two auxiliary linear problems 
with finite jumps. The approximate physical solution is then obtained by a weighted sum. The 
convergence and stability of the method are analyzed by the method of nonnegative matrices. 
Numerical examples are given to confirm the theory. In particular, numerical simulations are 
demonstrated in regards to the study of polymetric ion-selective electrodes and ion sensors.
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1. Introduction

In this paper, we study the numerics associated with the following nonlinear
interface parabolic problem:
(NIPP)
Find u : Ω− ∪Ω+ × [0, T ] → R such that u = u(x, t) satisfies

Lu := ut − (βux)x + qu = f, x ∈ Ω− ∪Ω+, t ∈ (0, T ](1)

u(a) = ξ(t), u(b) = η(t),(2)

[u]α = λu+u−,(3)

[βux]α = 0,(4)

u(x, 0) = g(x), x ∈ Ω− ∪Ω+.(5)

Here α is a fixed interface point, Ω− = (a, α), Ω+ = (α, b), the coefficient β =
β(x) > 0 is piecewise constant:

(6) β =

{
β− on Ω−,

β+ on Ω+,

the functions q = q(x) ≥ 0 and f = f(x, t) are assumed to be sufficiently smooth so
that the solution u(·, t) is smooth in Ω− ∪Ω+ for all t ∈ (0, T ]. This assumption is
needed since we consider finite difference methods throughout the paper. Also note
that the boundary conditions (2) are allowed to be time dependent. The parabolic
problem under consideration is nonlinear when λ ≠ 0 due to the interface jump
condition (3) in which the jump

[u]α = u+ − u−, u+ = lim
x→α+

u(x, t), u− = lim
x→α−

u(x, t)

is proportional to u+u− with a proportionality constant λ. In (4), [βux]α, the jump
in flux βux, is assumed to be zero. Problem NIPP (1)–(5) is motivated by [4] in
which Hetzer and Meir presented an idealized mathematical model in the study
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of polymetric membrane, ion-selective electrodes and ion sensors. Following [4], a
schematic diagram is shown in Figure 1 where u is the concentration, a = −aaq,
b = aorg, Ω

− = Iaq, Ω
+ = Iorg. See [4] for more details and the finite element

simulations associated with the model. A review paper on how pulsed amperometric
sensors work is [2]. However, for ease of reference we will also call the problem NIPP
the heat equation with discontinuous conductivity and nonlinear interface jump.

Figure 1. Polymeric Membrane, Ion-selective electrode, and Ion Sensor.

The s−parameter method. The solutions of NIPP could be obtained as
follows. Let u0 be the solution of

Lu = f, x ∈ Ω− ∪Ω+, t ∈ (0, T ](7)

u(a) = ξ(t), u(b) = η(t),(8)

[u]α = 0,(9)

[βux]α = 0,(10)

u(x, 0) = g(x), x ∈ Ω− ∪Ω+.(11)

On the other hand, let u1 be the solution of

Lu = 0, x ∈ Ω− ∪Ω+, t ∈ (0, T ](12)

u(a) = 0, u(b) = 0,(13)

[u]α = 1,(14)

[βux]α = 0,(15)

u(x, 0) = 0, x ∈ Ω− ∪Ω+.(16)

We can write the general solution u of the NIPP in the form

(17) u = u0 + su1

for some s ∈ R. It is easy to check that (1)-(2) and (4)-(5) hold. Furthermore, the
parameter s = [u]α is determined by the quadratic equation induced by the condi-
tion (3) (see Eq (106)). We shall call this method the s−parameter method. The
idea of the method can be found more or less in p. 527 of [4] without justification.
Note that it can also be potentially used when dealing with the counterpart elliptic
model. However, some issues needed to be resolved before it can be justified and
used.

a. Are the roots s all real?
b. If so, then we have two solutions and which one will lead to a physical

(concentration) solution 0 < u < 1?
c. Furthermore, can the method be used to the discretized version of NIPP

as well?


