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OPTIMIZED FIRST-ORDER TAYLOR-LIKE FORMULAS
AND GAUSS QUADRATURE ERRORS

JOEL CHASKALOVIC AND FRANCK ASSOUS

Abstract. In this article, we derive an optimal first-order Taylor-like formula. In a seminal
paper [15], we introduced a new first-order Taylor-like formula that yields a reduced remainder
compared to the classical Taylor’s formula. In this work, we relax the assumption of equally
spaced points in our formula. Instead, we consider a sequence of unknown points and a sequence
of unknown weights. We then solve an optimization problem to determine the optimal distribution
of points and weights that minimizes the corresponding remainder. Numerical results are provided
to illustrate our findings.
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1. Introduction

Even today, improving the accuracy of approximations remains a challenging
problem in numerical analysis. In this context, Taylor’s formula plays a crucial
role in various domains, especially when one considers error estimates to assess the
accuracy of a numerical approximation method (for example, see [25], [2], [28] for
finite element methods). This challenge becomes even more crucial when comparing
the relative accuracy between two given numerical methods. All error estimates
share a common structure, whether applied to the finite elements method [6], [21],
numerical approximations of ordinary differential equations [16], or to quadrature
formulas used for approximating integrals [16].

Let us specify these ideas in this context of numerical integration. Consider, for
instance, a composite quadrature rule of order k. For a given interval [a,b], let f
be a function in C**1([a,b]). The corresponding error of the composite quadrature
rule can be expressed as (refer to, e.g., [4], [7] or [16]), for a non-zero integer N:

b N
(1) / f(z)dz — Z Aif (zi)| < Cp b

a i=0
In this formula, h denotes the size of the N + 1 equally spaced panels [z;, x;11],
0 < i < N, that discretize the interval [a,b], and A\; are N + 1 real numbers.
Moreover, C}, is an unknown constant, independent of h, but dependent on f and
k. The fact that Cf is unknown arises from the presence of an unknown point in
the remainder term of Taylor’s expansion, as an heritage of Rolle’s theorem. This
prevents the precise determination of the approximation error of a given numerical
method, leading to a kind of “uncertainty”. In this way, this constant is directly
linked to the uncertainty associated with the remainder of Taylor’s formula [3].

To better understand the importance of Taylor’s formula in assessing the accu-

racy of a numerical approximation method, we can also consider the case of the
finite element method. We refer the reader to [13], Section 4, for a detailed expla-
nation of how this formula is directly related to finite element error approximation.
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Indeed, in this context, with the help of Céa’s lemma [21], since the approxima-
tion error is bounded by the interpolation error, using the corrected interpolation
polynomial derived from the new Taylor-like formula enables us to obtain a tighter
upper bound for the interpolation error compared to the usual one.

Usually, to overcome the lack of information regarding the unknown value of the
left-hand side of (1) which lies within the interval [0, Cxh**1], only the asymptotic
convergence rate comparison is considered. This comparison allows us to assess the
relative accuracy between two numerical quadratures of order k; and ko, (k1 < k2),
as h tends to zero. However, when comparing two composite quadrature rules for
a fixed value of h, as is common in many applications, the asymptotic convergence
rate is no longer a meaningful criterion (since h is fixed). Therefore, we focus on
minimizing the constants C}, by refining the estimation of the remainder in Taylor’s
formula. More precisely, assuming that the remainder lies within an interval [L, U],
(L < U), our goal is to minimize it by reducing the width of the interval, i.e.,
minimizing U — L.

From another point of view, several approaches have been proposed to determine
a way to enhance the accuracy of approximation. For example, within the frame-
work of numerical integration, we refer the reader to [5], [8] or [20], and references
therein, where the authors propose an improved quadrature formula that refines the
trapezoid inequalities. To achieve this, they consider functions with varying levels
of regularity, and based on Griiss’s inequality, they derive the corresponding trape-
zoid quadrature errors. In contrast, our approach primarily focuses on minimizing
the remainder in Taylor’s expansion. Alternatively, due to the lack of information,
heuristic methods were considered, basically based on a probabilistic approach, see
for instance [1], [3], [22], [23] or [9], [10] and [11]. This allows to compare different
numerical methods, and more precisely finite element, for a given fixed mesh size,
[12].

In this context, we recently developed a first-order Taylor-like formula in [15] and
a second-order Taylor-like formula in [14]. The goal was to minimize, in the sense
defined above, the corresponding remainder by transferring part of the numerical
weight of this remainder to the polynomial involved in the Taylor expansion. In
both of these cases, we a prioriintroduced a linear combination of f' (and f” in [14])
computed at equally spaced points in [a,b], and we determined the corresponding
weights in order to minimize the remainder. We proved that the associated upper
bound in the error estimate is 2n times smaller than the classical one for the first-
order Taylor’s theorem, and 3/16n? times smaller than the corresponding one in
the classical second-order Taylors’s formula.

In this paper, we relax the assumption of equally spaced points and consider a
sequence of unknown points in the interval [a, b], where a given function f needs to
be evaluated. Simultaneously, we introduce a sequence of unknown weights to be
determined with the goal of minimizing the remainder. Then, we will prove that the
remainder of the corresponding first-order expansion is minimized when the points
between a and b are equally spaced, with two different configurations depending on
whether the endpoints a and b of the interval are included or excluded.

The paper is organized as follows. In Section 2, we present a new first-order
Taylor-like formula built on a sequence of given points xy, (k = 0,...,n), in [a, b],
and given weights wy, (k =0,...,n). In Section 3 we derive the two main results of
this paper, focusing on the optimal choice of points =, and weights wy that allow
us to minimize the remainder of the first-order Taylor-like formula. Section 4 aims



