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NUMERICAL ANALYSIS OF THE FINITE DIFFERENCE TIME

DOMAIN METHODS WITH HIGH ACCURACY IN TIME FOR

MAXWELL EQUATIONS

LIPING GAO, XIAOSONG ZHANG, AND RENGANG SHI∗

Abstract. In this paper, we give a rigorous analysis of the finite difference time domain (FDTD)

method with high accuracy in time (HAIT) (named HAIT-FDTD(M)) for the three dimensional
Maxwell equations, where the time discretization is based on the Taylor expansion of the form:

Un = C0
n + C1

n∆t + · · · + 1
M !

CM
n (∆t)M to approximate the fields in time. It is proven that

the solutions of the schemes and the vectors representing the coefficients are divergence free. By
using the energy method, the numerical energy identities of HAIT-FDTD(M) with 3 ≤ M ≤ 8 are

derived. It is then proved that these schemes are numerically and monotonically energy conserved
as the polynomial degree M becomes large. With the help of the energy identities, stability
conditions for the six schemes are derived, and how to select M and ∆t in practice is given. By
deriving error equations, we prove that the six schemes have convergence of the Mth order in time

and the second order in space. Numerical experiments are provided and confirm the analysis on
free divergence, approximate energy conservation, stability, and convergence.
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1. Introduction

The finite difference time domain (FDTD) method is one of the methods for
numerical solutions of time dependent Maxwell equations, and causes many peo-
ple’s interests and much good research work. For example, the Yee scheme ([31]),
proposed by Yee in 1966, is a very popular and efficient method (see Taflove [26]).
Monk and Süli [15] proved that the Yee scheme over non-uniform grids is of super
convergence of second order in L2 norm. For the Yee scheme in metamaterials,
Li and Shields [12] proved that this scheme is also super convergent in L2 norm.
The stability and second order convergence of the Yee scheme under H1 norm were
proved in [7]. Recently, convergence analysis of the Yee schemes in linear dispersive
media was given by Sakkaplankul and Bokil in [20]. The other FDTD method-
s, including the alternating direction implicit FDTD (ADI-FDTD) methods, the
energy-conserved splitting FDTD methods, symplectic FDTD method, locally-one-
dimensional (LOD) FDTD method, etc. and their analysis are seen in [33, 17, 6],
[1, 2], [8, 10, 24, 25],[32], [9], [23], [3], [11], [4], [14, 29], [21], [30], [19, 27], [18] and
the references therein.

Time discretization is important for accuracy, efficiency, stability, and conver-
gence. There are many good time-stepping methods in numerical solutions of
Maxwell equations [26, 16, 13]. For example, leap-frog method in [31, 18], Runge-
Kutta method in [9, 21], ADI method in [33, 17], splitting methods in [11, 5], energy
splitting conserving methods in [1, 2, 14, 30], symplectic method in [10, 25, 24],
fourth order method based on the relation between time derivatives and spatial
derivatives [29, 32], time-domain moment method based on weighted Laguerre
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polynomials in [3], Newmark time-stepping method in [4], LOD method in [23],
Crank-Nicolson method in [28] and explicit-implicit hybrid time-stepping method
in [19, 27] and the others in the references.

Different from the above FDTD methods, a new explicit FDTD method with
high accuracy in time (HAIT)(called HAIT-FDTD(M)) was proposed in [22] by
using Taylor expansion of the form: Un = C0

n + C1
n∆t + · · · + 1

M !
CM

n (∆t)M to ap-
proximate the fields in time, which transforms the Maxwell equations into a system
of time-independent differential equations in the coefficients Ck

n(k = 0, 1, . . . ,M),
and using the central difference methods to approximate the spatial derivatives of
Ck

n. Numerical experiments demonstrate that HAIT-FDTD(M) has the following
features: easy implementation, divergence free, numerical energy conservation, and
good stability and convergence. However, the rigorous analysis of HAIT-FDTD(M)
on stability, error estimate, and convergence by the energy method is not available,
since the form of the scheme is very different from traditional ones, which makes
the usual analysis methods on stability and convergence (see [15, 1, 7], etc.) do not
work on HAIT-FDTD(M). In addition, how to select the polynomial degree M and
time step sizes is not clear. Therefore, it is significant to give a rigorous analysis of
HAIT-FDTD(M) on these issues.

In this paper, we analyze the HAIT-FDTD(M) schemes for the 3D Maxwell equa-
tions with perfectly electric conducting (PEC) boundary conditions. The research
methods and results are as follows:

(i) It is proved that the solutions of the HAIT-FDTD(M) schemes and the rep-
resenting coefficients retain the free divergence property.

(ii) By using the energy method, numerical energy identities of the HAIT-
FDTD(M) schemes with 3 ≤ M ≤ 8 are derived, and it is then proved that these
schemes are approximately energy conserved. With the help of the energy identi-
ties, the stability conditions of the six schemes (which are weaker than the CFL
(Courant-Friedrichs-Lewy) condition and can be used to select time step sizes and
degree M) are derived, and the stability in L2 norm is then proved.

(iii) It is proved that the HAIT-FDTD(M) schemes with 3 ≤ M ≤ 8 are of
convergence of M -th order in time and second order in space by using different
error analysis from the traditional ones.

(iv) Numerical experiments are carried out and confirm the theoretical analysis
of the schemes on free divergence, numerical energy conservation, good stability,
and convergence.

2. Maxwell equations and some properties.

2.1. Maxwell equations and properties of the solution. Consider the 3D
Maxwell equations in a domain of Ω× (0, T ]:
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where Ω is filled with homogeneous and isotropic medium, so the electric permit-
tivity ε and the magnetic permeability µ are constants, and for p = (x, y, z) ∈ Ω,
u = x, y, z

Eu = Eu(p, t), Hu = Hu(p, t), (Ex, Ey, Ez) =: E, (Hx, Hy, Hz) =: H


