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A MULTIGRID-BASED FOURTH ORDER FINITE DIFFERENCE
METHOD FOR ELLIPTIC INTERFACE PROBLEMS WITH

VARIABLE COEFFICIENTS

YIMING REN AND SHAN ZHAO∗

Abstract. The paper introduces a fourth-order augmented matched interface and boundary
(AMIB) method for solving elliptic interface problems with complex interfaces and piecewise
smooth coefficients in two and three dimensions. To resolve the challenge posed by non-constant
coefficients within the AMIB framework, the fast Fourier transform (FFT) Poisson solver of the
existing AMIB methods is replaced by a geometric multigrid method to efficiently invert the
Laplacian discretization matrix. In this work, a fourth order multigrid method will be employed in
the framework of the AMIB method for elliptic interface problems with variable coefficients in two
and three dimensions. Based on a Cartesian mesh, the standard fourth-order finite differences are
employed to approximate the first and second derivatives involved in the Laplacian with variable
coefficients. Near the interface, a fourth-order ray-casting matched interface and boundary (MIB)
scheme is generalized to variable coefficient problems to enforce interface jump conditions in the
corrected finite difference discretization. The augmented formulation of the AMIB allows us to
decouple the interface treatments from the inversion of the Laplacian discretization matrix, so
that one essentially solves an elliptic subproblem without interfaces. A fourth order geometric
multigrid method is introduced to solve this subproblem with a Dirichlet boundary condition,
where fourth order one-sided finite difference approximations are considered near the boundary in
all grid levels. The proposed multigrid method significantly enhances the computational efficiency
in solving variable coefficient problems, while achieving a fourth-order accuracy in accommodating
complex interfaces and discontinuous solutions.
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1. Introduction

This work focuses on solving multi-dimensional elliptic interface problems with
variable coefficients. We consider an elliptic partial difference equation (PDE) in a
domain Ω

(1) ∇ · (β∇u) + κu = f(x), x ∈ Ω,

subject to Dirichlet boundary conditions on the boundary ∂Ω. The function u(x)
together with the corresponding source term f(x) depend on a vector variable
x = (x1, x2, · · · , xd) for d = 2 or d = 3 on a rectangular or cubic domain Ω.
The interface Γ defined by Γ = Ω+ ∩Ω− divides the computational domain Ω into
disjoint subdomains Ω = Ω+∪Ω−. An illustration of subdomains in two dimensions
is given in Fig. 1. The coefficients β(x) and κ(x) are smooth functions on each
disjoint subdomain, but may be discontinuous across the interface Γ, i.e., they are
piecewise smooth functions

β(x) =

{
β−(x) in Ω−

β+(x) in Ω+,
κ(x) =

{
κ−(x) in Ω−

κ+(x) in Ω+.
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Similarly, the source f(x) is also piecewisely smooth with notation f+(x) and
f−(x), respectively, in Ω+ and Ω−. It is assumed that β(x) is always positive.
Across the interface Γ, two jump conditions are known for the function and its flux
in the normal direction

[[u]] := u+ − u− = ϕ(x), x ∈ Γ,(2)

[[βun]] := β+(x)∇u+ · n⃗− β−(x)∇u− · n⃗ = ψ(x), x ∈ Γ,(3)

where n⃗ is the outward normal direction of Γ pointing from Ω− to Ω+, and the
superscript stands for the limiting value from each side of the interface. Equations
(2) and (3) are called as the zeroth and first order jump conditions. Such an elliptic
interface problem with discontinuous coefficients has wide application in a variety of
fields such as fluid dynamics, modeling of underground waste disposal, solidification
processes, oil reservoir simulations, and many others.

When the coefficients β(x) and κ(x) are piecewise constants, the present problem
reduces to the usual elliptic interface problem, for which the finite element method
(FEM) is a commonly used approach. Classical FEM [3, 7, 12, 35] delivers sat-
isfactory accuracy, particularly when the interfaces align well with the underlying
meshes. However, practical scenarios often necessitate the construction of numer-
ical methods on non-fitted meshes. This requirement has driven the development
of the Immersed FEM (IFEM) [31], in which local basis functions are adapted to
ensure compliance with the prescribed jump conditions.

Finite difference methods on Cartesian grids have received extensive attention
in the context of elliptic interface problems. Peskin [44] laid the foundation for this
field by introducing a first-order accurate immersed boundary method in the 1970s.
LeVeque and Li [34] pioneered the first second-order finite difference approach,
the Immersed Interface Method (IIM), which employs Taylor series expansions to
determine stencil weights. Another popular technique is the Ghost Fluid Method
(GFM) [17], typically a first-order method [40], but it has been extended to second
order in [39]. The recovery of flux convergence in GFM has been investigated in
[16]. Chen et al. [11] developed a second-order compact finite difference method for
solving elliptic interface problems. In addition to finite element and finite difference
methods, other effective algorithms for solving elliptic interface problems include
virtual node method [4, 28], finite volume method [6], and coupling interface method
[13, 48]. We note that the aforementioned methods usually deliver first or second
order accuracy.

Addressing variable coefficients in elliptic interface problems is a challenging
endeavor. These variable coefficients could exhibit significant variations across the
interface, causing abrupt shifts in solutions. Managing such discontinuities presents
a huge difficulty in maintaining numerical stability and precision. Due to the inher-
ent complexity, only a limited number of studies have ventured into this domain.
A weak formulation has been developed in [30] for a grid that fits the geometry of
the problem, offering a solution to variable coefficient elliptic equations. Remark-
ably, it only requires Lipschitz continuity rather than smoothness for the interfaces.
Expanding upon the foundational principles of the IIM, novel techniques like the
Decomposed Immersed Interface Method (DIIM) [5] and Augmented Immersed In-
terface Method (AIIM) [37] have been proposed to address elliptic interface prob-
lems with variable coefficients. A second-order finite-volume method is presented in
[42] that operates on Cartesian grids for variable coefficient elliptic equations with
embedded interfaces. Ref. [41] describes a composite spectral scheme for solving


