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MODIFIED BDF2 SCHEMES FOR SUBDIFFUSION MODELS
WITH A SINGULAR SOURCE TERM

MINGHUA CHEN, JIANKANG SHI*, AND ZHI ZHOU

Abstract. The aim of this paper is to study the time stepping scheme for approximately solving
the subdiffusion equation with a weakly singular source term. In this case, many popular time
stepping schemes, including the correction of high-order BDF methods, may lose their high-order
accuracy. To fill in this gap, in this paper, we develop a novel time stepping scheme, where the
source term is regularized by using an m-fold integral-derivative and the equation is discretized
by using a modified BDF2 convolution quadrature. We prove that the proposed time stepping
scheme is second-order, even if the source term is nonsmooth in time and incompatible with the
initial data. Numerical results are presented to support the theoretical results. The proposed
approach is applicable for stochastic subdiffusion equation.
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1. Introduction

For anomalous, non-Brownian diffusion, a mean squared displacement often fol-
lows the following power-law

(x2(t)) =~ Kqt®.

Prominent examples for subdiffusion include the classical charge carrier transport in
amorphous semiconductors, tracer diffusion in subsurface aquifers, porous systems,
dynamics of a bead in a polymeric network, or the motion of passive tracers in
living biological cells [22, 23]. Subdiffusion of this type is characterised by a long-
tailed waiting time probability density function v(t) ~ t~1=%, corresponding to the
time-fractional diffusion equation with and without an external force field [23, Eq.

(83)]
(W) Opu(z,t) — OF~“Au(x,t) = f(x,t), 0 < a < 1.

Here f is a given source function, and the operator A = A denotes Laplacian on
a polyhedral domain © C R? (d = 1,2,3) with a homogenous Dirichlet boundary
condition. The fractional derivative is taken in the Riemann-Liouville sense, that
is, 815170‘ f = 0:Jf with the fractional integration operator

1 1

0 = / (=) ) = st ),

and * denotes the Laplace convolution: (f * g)(t) fot ft—=7)g(r)dr.
Since the Riemann-Liouvile fractional derivative and the Caputo fractional de-
rivative can be written in the form [26, p. 76]

1

O ule,t) = “Dule. ) + ey

t~%u(x,0),
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which implies that the equivalent form of (#) can be rewritten as

@) Opu(x,t) — CDziaAu(x, t) = f(z,t)+ Wt_(l_“), O<ax<l

with the Caputo fractional derivative
7F(11— ) /Ot (t—s) %/ (s)ds, 0 <t <T.
Applying the fractional integration operator J*~% to both sides of (#), we obtain
the equivalent form of (#) as, see [21, Eq. (1.6)] or [31, Eq. (2.3)], namely,
1
I'l-a)
As another example, the fractal mobile/immobile models for solute transport

associated with power law decay PDF describing random waiting times in the im-
mobile zone, lead to the following models [29, Eq. (15)]

b
I'l—a)
Note that the right hand side in the aforementioned PDE models (#)-(<{>) might

be nonsmooth in the time variable. In this paper, we consider the subdiffusion
model with weakly singular source term:

(1) CD?U({E,t)—A’U,(iC,t) :g(xvt) = tMOf(.’E,t)
with the initial condition u(x,0) = ug(z) := v, and the homogeneous Dirichlet

boundary conditions. The symbol o can be either the convolution * or the product,
and p is a parameter such that

°Dyult) =

(&) DY ulx, t)— Au(z, t) = 7% f(z,t), 0<a< .

() Ayu(z,t) + D u(x, t) — Au(z,t) = — t™%u(x,0), 0 < a< 1.

u > —11if o denotes convolution, and p > —a if o denotes product.

The well-posedness could be proved using the separation of variables and Mittag—
Leffler functions, see e.g. [27, Eq. (2.11)].

Note that many existing time stepping schemes may lose their high-order accu-
racy when the source term is nonsmooth in the time variable. As an example, it
was reported in [11, Section 4.1] that the convolution quadrature generated by k
step BDF method (with initial correction) converges with order O(71#), provided
that the source term behaves like ¢#, > 0, see Lemma 3.2 in [35], also see Table
1. The aim of this paper is to fill in this gap.

It is well-known that the smoothness of all the data of (1) (e.g., f = 0) does
not imply the smoothness of the solution u which has an initial layer at ¢ — 0T
(i.e., unbounded near t = 0) [26, 27, 33]. There are already two predominant
discretization techniques in time direction to restore the desired convergence rate for
subdiffusion under appropriate regularity source function. The first type is that the
nonuniform time meshes/graded meshes are employed to compensate/capture the
singularity of the continuous solution near t = 0 under the appropriate regularity
source function and initial data, see [3, 15, 17, 20, 25, 24, 33]. See also spectral
method with specially designed basis functions [4, 8, 38]. The second type is based
on correction of high-order BDFk or L; approximation, and then the desired high-
order convergence rates can be restored even for nonsmooth initial data [5, 19, 18,
9, 11, 35]. For fractional ODEs, one idea is to use starting quadrature weights to
correct the fractional integrals [18] (or fractional substantial calculus [1])

1

Tog(t) = @/0 (t — ) Lg(r)dr with g(t) = t* F(£), > —1,



