A Singularly Perturbed Convection-Diffusion Problem with a Moving Interior Layer
Keywords:
Singular perturbation, interior layer, Shishkin mesh.Abstract
A singularly perturbed parabolic equation of convection-diffusion type with an interior layer in the initial condition is studied. The solution is decomposed into a discontinuous regular component, a continuous outflow boundary layer component and a discontinuous interior layer component. A priori parameter-explicit bounds are derived on the derivatives of these three components. Based on these bounds, a parameter-uniform Shishkin mesh is constructed for this problem. Numerical analysis is presented for the associated numerical method, which concludes by showing that the numerical method is a parameter-uniform numerical method. Numerical results are presented to illustrate the theoretical bounds on the error established in the paper.