A Finite Element Dual Singular Function Method to Solve the Stokes Equations Including Corner Singularities
Keywords:
Stokes equations, dual singular function method, corner singularity, incompressible fluids.Abstract
The finite element dual singular function method [FE-DSFM] has been constructed and analyzed accuracy by Z. Cai and S. Kim to solve the Laplace equation on a polygonal domain with one reentrant corner. In this paper, we impose FE-DSFM to solve the Stokes equations via the mixed finite element method. To do this, we compute the singular and the dual singular functions analytically at a non-convex corner. We prove well-posedness by using the contraction mapping theorem and then estimate errors of the algorithm. We obtain optimal accuracy $O(h)$ for velocity in $\rm{H}^1(Ω)$ and pressure in $L^2(Ω)$, but we are able to prove only $O(h^{1+\lambda})$ error bounds for velocity in $\rm{L}^2(\Omega)$ and stress intensity factor, where $\lambda$ is the eigenvalue (solution of (4)). However, we get optimal accuracy results in numerical experiments.