Equivalence Between Riemann-Christoffel and Gauss-Codazzi-Mainardi Conditions for a Shell
Keywords:
Surfaces, 3D manifolds, Pfaffian systems, Frobenius integrability conditions, Riemann-Christoffel curvature tensor, moving frames, Cartan differential geometry, Tensorial calculus.Abstract
We establish the equivalence between the vanishing three-dimensional Riemann- Christoffel curvature tensor of a shell and the two-dimensional Gauss-Codazzi-Mainardi compatibility conditions on its middle surface. Additionally, we produce a new proof of Gauss theorema egregium and Bonnet theorem (reconstructing a surface from its two fundamental forms). This is performed in the very elegant framework of Cartan's moving frames.
Downloads
Published
2016-09-03
Issue
Section
Articles