Efficient Galerkin-Mixed FEMs for Incompressible Miscible Flow in Porous Media
Keywords:
Galerkin-mixed FEM, incompressible miscible flow in porous media, fully linearized scheme.Abstract
The paper focuses on numerical study of the incompressible miscible flow in porous media. The proposed algorithm is based on a fully decoupled and linearized scheme in the temporal direction, classical Galerkin-mixed approximations in the FE space ($V^r_h$, $S^{r-1}_h$ × $H^{r-1}_h$) ($r$ ≥ 1) in the spatial direction and a post-processing technique for the velocity/pressure, where $V^r_h$ and $S^{r-1}_h$ × $H^{r-1}_h$ denotes the standard $C^0$ Lagrange FE and the Raviart-Thomas FE spaces, respectively. The decoupled and linearized Galerkin-mixed FEM enjoys many advantages over existing methods. At each time step, the method only requires solving two linear systems for the concentration and velocity/pressure. Analysis in our recent work [37] shows that the classical Galerkin-mixed method provides the optimal accuracy $O$($h^{r+1}$) for the numerical concentration in $L^2$-norm, instead of $O$($h^r$) as shown in previous analysis. A new numerical velocity/pressure of the same order accuracy as the concentration can be obtained by the post-processing in the proposed algorithm. Extensive numerical experiments in both two- and three-dimensional spaces, including smooth and non-smooth problems, are presented to illustrate the accuracy and stability of the algorithm. Our numerical results show that the one-order lower approximation to the velocity/pressure does not influence the accuracy of the numerical concentration, which is more important in applications.