

A Generalized Proof of the Smoothness of 6-Point Interpolatory Scheme

Ghulam Mustafa¹, Faheem Khan ² and Muhammad Sadiq Hashmi ³ Department of Mathematics, The Islamia University of Bahawalpur Pakistan

(Received September 24, 2009, accepted October 22, 2009)

Abstract. S. S. Siddiqi and A. Nadeem [A proof of the smoothness of the 6-point interpolatory scheme, International Journal of Computer Mathematics, 83(5-6), 503-509, 2006] proved that Weissman's 6-point subdivision scheme is C^2 for a particular value of parameter by means of Laurent polynomial method. In this work, we also use the same method to get C^2 continuity of 6-point scheme over the parametric interval. The original interval (0.0, 0.0277) presented by Weissman for continuity is contained in the interval (0.0, 0.0425] introduced in this article.

Keywords: interpolating subdivision scheme, continuity, smoothness, convergence, shape parameter, Laurent polynomial.

1. Introduction

A subdivision curve, in the field of 2D and 3D computer graphics, is a method of representing a smooth curve via the specification of a coarser piecewise linear polygon. The smooth curve can be calculated from the coarse polygon as the limit of an iterative process of subdividing each edge into smaller edges that better approximate the smooth curve. Subdivision schemes are classified into two categories: interpolating and approximating. If the control points of the original polygon and the newly generated control points after subdivision are interpolated by the limit curve then scheme is called interpolating otherwise it is called approximating.

Dyn et al. [1] introduced 4-point interpolating subdivision scheme and proved that scheme is C^1 by means of eigenanalysis. Youchun et al. [5] used the Laurent polynomial to obtain the same result. Weissman [4] introduced a 6-point interpolating scheme which gives C^2 limit function over the parametric interval (0.0, 0.02). Siddiqi and Nadeem [3] have shown that smoothness of the 6-point scheme is C^2 for particular value of parameter (i.e. 0.02) by means of Laurent polynomial method. In this article, we also take advantage of Laurent polynomial method to get C^2 continuity of the 6-point subdivision scheme over the parametric interval (0.0, 0.0425]. The original parametric interval for continuity presented by Weissman is subset of the interval introduced in our work.

2. Preliminaries

A general compact form of univariate subdivision scheme S which maps a polygon $f^k = \{f_i^k\}_{i \in Z}$ to a refined polygon $f^{k+1} = \{f_i^{k+1}\}_{i \in Z}$ is defined by

³ E-mail address: fahimscholar@gmail.com

 $^{^1\,}Corresponding\ author.\ \textit{E-mail\ address}:\ ghulam.mustafa@iub.edu.pk\ ,\ mustafa_rakib@yahoo.com$

² E-mail address: sadiq.hashmi@gmail.com

This work is supported by the Indigenous PhD Scholarship Scheme of Higher Education Commission (HEC) Pakistan.

$$\begin{cases} f_{2i}^{k+1} = \sum_{j \in \mathbb{Z}} a_{2j} f_{i-j}^{k}, \\ f_{2i+1}^{k+1} = \sum_{j \in \mathbb{Z}} a_{2j+1} f_{i-j}^{k}, \end{cases}$$
(2.1)

where the set $a = \{a_i : i \in Z\}$ of coefficients is called the mask of the subdivision scheme. A necessary condition for the uniform convergence of subdivision scheme (2.1) is that

$$\sum_{j \in \mathbb{Z}} a_{2j} = \sum_{j \in \mathbb{Z}} a_{2j+1} = 1. \tag{2.2}$$

For the analysis of subdivision scheme with mask a, it is very practical to consider the z - transform of the mask

$$a(z) = \sum_{i \in \mathcal{I}} a_i z^i, \tag{2.3}$$

which is usually called the *symbol/Laurent polynomial* of the scheme. From (2.2) and (2.3) the Laurent polynomial of a convergent subdivision scheme satisfies

$$a(-1) = 0$$
 and $a(1) = 2$. (2.4)

This condition guarantees the existence of a related subdivision scheme for the divided differences of the original control points and the existence of associated $a^{(1)}(z)$, which can defined as follows:

$$a^{(1)}(z) = \frac{2z}{1+z}a(z).$$

The subdivision scheme S_1 with symbol $a^{(1)}(z)$, is related to scheme S with symbol a(z) by the following theorem.

Theorem 2.1. [2] Let S denote a subdivision scheme with Laurent polynomial a(z) satisfying (2.2). Then there exist a subdivision scheme S_1 with the property

$$\Delta f^{k} = S_{1} \Delta f^{k-1}$$

where $f^k = S^k f^0$ and $\Delta f^k = \{(\Delta f^k)_i = 2^k (f^k_{i+1} - f^k_i); i \in Z\}$. Furthermore, S is a uniformly convergent if and only if $\frac{1}{2}S_1$ converges uniformly to zero function for all initial data f^0 , in the sense that

$$\lim_{k \to 0} \left(\frac{1}{2} S_1 \right)^k f^0 = 0. \tag{2.5}$$

A scheme S_1 satisfying (2.5) for all initial data f^0 is termed contractive. By Theorem 2.1, the convergence of S is equivalent to checking whether S_1 is contractive, which is then equivalent to checking whether $\left\|\left(\frac{1}{2}S_1\right)^L\right\|_{\infty} < 1$, for some integer L > 0.

Since there are two rules for computing the values at next refinement level, one with even coefficients of the mask and one with odd coefficients of the mask, we define the norm