
 

Published by World Academic Press, World Academic Union 

ISSN 1746-7659, England, UK 

Journal of Information and Computing Science 

Vol. 6, No. 2, 2011, pp. 083-096 

 

 
 

 

 

An Extension of Edge Zeroing Heuristic for Scheduling 

Precedence Constrained Task Graphs on Parallel Systems 

Using Cluster Dependent Priority Scheme 

Abhishek Mishra and Anil Kumar Tripathi   

 Deptartment of Computer Engineering, Institute of Technology, Banaras Hindu University, Varanasi, India, 

221005 

(Received November 3, 2010, accepted December 20, 2010) 

 (An extended abstract of this paper appears in the Proceedings of 2010 IEEE International Conference on Computer & 

Communication Technology (ICCCT-2010), pages 647-651, ISBN: 978-1-4244-9034-9.) 

Abstract. Sarkar's edge zeroing heuristic for scheduling precedence constrained task graphs on parallel 

systems can be viewed as a priority based algorithm in which the priority is assigned to edges. In this 

algorithm, the priority is taken as the edge weight. This can also be viewed as a task dependent priority 

function that is defined for pairs of tasks. We have extended this idea in which the priority is a cluster 

dependent function of pairs of clusters (of tasks). Using this idea we propose an algorithm of complexity 

O(|V||E|(|V|+|E|)) and compare it with some well known algorithms. 

Keywords: clustering, homogeneous systems, parallel processing, scheduling, task allocation. 

1. Introduction 

A parallel system is designed so that it can execute the applications faster than a sequential system. For 

this we need to parallelize the program. There are three steps involved in the parallelization of a program 

(Sinnen [27]). The first step is called task decomposition in which the application is divided into tasks. The 

degree of concurrency is the number of tasks that can be executed simultaneously (Grama et al. [10]). 

The tasks generated may have interdependencies between them that will decide the partial execution 

order of tasks. The determination of precedence constraints between the tasks is the second step of 

parallelization and is called dependence analysis (Banerjee et al. [2], Wolfe [29]).  

A dependence relation among the tasks is represented as a directed acyclic graph, also known as the task 

graph. Nodes in the task graph represent the tasks and have a weight associated with them that represents the 

execution time of the task. Edges in the task graph represent the dependence relation between the tasks and 

have a weight associated with them that represents the communication time between the tasks. 

The final step of parallelization is the scheduling of tasks to the processors. By scheduling we mean both 

the spatial assignment (task allocation), and the temporal assignment (assigning start time) of tasks to the 

processors. 

The problem of finding a scheduling for a given task graph on a given set of processors that takes 

minimum time is NP-Complete (Sarkar [26], Papadimitriou and Yannakakis [24]). Therefore several 

heuristics are applied for solving this problem in polynomial time (Yang and Gerasoulis [32], Gerasoulis and 

Yang [8], Dikaiakos et al. [7], Kim and Browne [16], Kwok and Ahmed [17], [18], Lo [19], Malloy et al. 

[22], Wu and Gajski [30], Kadamuddi and Tsai [14], Sarkar [26], Yang and Gerasoulis [33], Wu et al. [31], 

Sih and Lee [28]). The solutions generated by using these algorithms are generally suboptimal. 

Our heuristic is an extension of Sarkar's edge zeroing heuristic [26] for scheduling precedence 

constrained task graphs on parallel systems. Sarkar's algorithm can be viewed as a task dependent priority 

based algorithm in which the priority (in this case edge weight) is a function of pairs of tasks. We extend this 

concept and define the priority as a cluster dependent function of pairs of clusters. Using this concept we 

propose an algorithm of complexity O(|V||E|(|V|+|E|)) and compare it with some well known algorithms. 

The remainder of the paper is organized in the following manner. Section 2 presents an overview of the 



Abhishek Mishra, et al: An Extension of Edge Zeroing Heuristic for Scheduling Precedence Constrained Task Graphs 

 

JIC email for contribution: editor@jic.org.uk 

84 

related literature. Section 3 defines a cluster dependent priority scheme that is dependent on cluster-pairs and 

also presents the proposed algorithm. Section 4 presents a detailed description of the algorithms used. 

Section 5 gives a sample run of the algorithm.  Section 6 presents some experimental results. And finally in 

section 7 we conclude our work. 

2. Literature Overview 

Most scheduling algorithms for parallel systems in the literature are based on an idealized model of the 

target parallel system also referred to as the classic model (Sinnen [27]). It is a set of identical processors 

with fully connected dedicated communication subsystem. Local communications are cost-free and we also 

have concurrent inter-processor communications. 

A fundamental scheduling heuristic is called the list scheduling heuristic. In list scheduling, first we 

assign a priority scheme to the tasks. Then we sort the tasks according to the priority scheme, while 

respecting the precedence constraints of the tasks. Finally each task is successively scheduled on a processor 

chosen for it. Some examples of list scheduling algorithms are: Adam et al. [1], Coffman and Graham [3], 

Graham [9], Hu [13], Kasahara and Nartia [15], Lee et al. [20], Liu et al. [21], Wu and Gajski [30], Yang and 

Gerasoulis [34]. 

Another fundamental scheduling heuristic is called clustering. Basically it is a scheduling technique for 

an unlimited number of processors. It is often proposed as an initial step in scheduling for a limited number 

of processors. A cluster is a set of tasks that are scheduled on the same processor. Clustering based 

scheduling algorithms generally consist of three steps. The first step finds a clustering of the task graph. The 

second step finds an allocation of clusters to the processors. The last step finds a scheduling of the tasks. 

Some examples of clustering based scheduling algorithms are: Mishra et al. [23], Yang and Gerasoulis [32], 

Kim and Browne [16], Kadamuddi and Tsai [14], Sarkar [26], Hanen and Munier [11]. 

3. The Cluster Dependent Priority Scheduling Algorithm 

3.1. Notation 
Let N denote the set of natural numbers: {1, 2, 3, ...}. Let R denote the set of real numbers, and let R+ 

denote the set of non-negative real numbers. For (1 ≤ i ≤ n), let there be n tasks Mi. Let  

                                                            M = {Mi | 1 ≤ i ≤ n}                                                                        (1)  

be the set of tasks. Then for (1 ≤ i ≤ n), the clusters Ci  M are such that for i ≠ j and (1 ≤ i ≤ n, 1 ≤ j ≤ n):  

                                                              Ci ∩i ≠ j Cj = ф,                                                                              (2) 

and 

                                n
i = 1Ci = M.                                                                            (3)                                                                                                                           

Let 

                                                C = {Cj | Cj  M, 1 ≤ i ≤ n}                                                             (4) 

be a decomposition of M into clusters. Note that some of the Cj's may be empty. Let  

                                                                  V = {i | 1 ≤ i ≤ n}                                                                      (5) 

denote the set of vertices of the task graph. Let the directed edge from i to j be denoted as (i → j). Let  

                                                   E = {(i, j) | i  V, j  V, (i → j)}                                                           (6) 

denote the set of edges of the task graph. Let mi  R+ be the execution time of the task Mi. If (i, j)  E, then 

let wij  R+ be the communication time from Mi to Mj. Let T be the adjacency list representation of the task 

graph. 

Let cluster : N → N be a function such that: 

                                                        cluster(i) = j ↔ Mi  Cj.                                                               (7)   

For Cj  C, let comp : C → R+ be a function that gives the total computation time of a cluster: 

                                                                comp(Cj) = ∑MiCj wi.                                                                   (8) 

For Ci  C, and Cj  C, let comm : C X C → R+ be a function that gives the total communication time 

from the first cluster to the second cluster: 

                                             comm(Ci, Cj) = ∑Mp   Ci, Mq   Cj, (p, q)  E wpq.                                                  (9) 


