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Abstract: This paper is concerned with the study of the maximum modulus and the coefficients of the 

power series expansion of a function of several complex variables analytic in the unit polydisc.  
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1. Introduction and Definitions  
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In 1968 Sons
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Maclane [6] and Kapoor [5] proved the following results which are the characterization of order and 

lower order of a function f analytic inU , in terms of the coefficients nc . 
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Theorem 1.2 [5] Let 
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Notation 1.3 [7] 
[0] [0]log , expx x x x   and for positive integer m, 

[ ] [ 1]log log(log )m mx x , 

[ ] [ 1]exp exp(exp )m mx x . 

In a paper [4] Juneja and Kapoor introduced the definition of p-th order and lower p-th order and in 2005 

Banerjee [1] generalized Theorem 1.1 and Theorem 1.2 for p-th order and lower p-th order respectively. 

Definition 1.4 [4] If 
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)(  be analytic inU , its p-th order p  and lower p-th order p  are 

defined as  
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Theorem 1.5 [1] Let 
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Theorem 1.6 [1] Let 
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In 2008 Banerjee and Dutta [2] introduced the following definition. 

Definition 1.7 Let ),( 21 zzf be a non-constant analytic function of two complex variables 1z  and 2z  

holomorphic in the closed unit polydisc 

 1 2: ( , ) :| | 1; 1,2jP z z z j   

then order of f is denoted by   and is defined by 

 ;
1

1
.

1

1
exp),(:0inf

21

21



 











rr
rrF for all 1,)(0 210  rrr  . 

Equivalent formula for   is 
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In a resent paper [3] Banerjee and Dutta introduce the definition of p-th order and lower p-th order of 

functions of two complex variables analytic in the unit polydisc and generalized the above results for 

functions of two complex variables analytic in the unit polydisc. 

Definition 1.8 Let 1 2 1 2
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be its maximum modulus. Then the p-th order p  and lower p-th order p are defined as  
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When 2p  , Definition 1.8 coincides with Definition 1.7. 

Theorem 1.9 Let 1 2( , )f z z  be analytic in U and having p-th order ).0(  pp   Then 
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Theorem 1.10 Let 1 2( , )f z z  be analytic in U and having lower p-th order ).0(  pp   Then 


