

Existence of Multiple Solutions for a Class of Nonlinear Elliptic Problems Involving the P-Laplacian

G. A. Afrouzi⁺ and Z. Valinejad^{*}

Islamic Azad University, Ghaemshahr Branch, P.O. Box 163, Ghaemshahr, Iran Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran Babolsar, Iran.

(Received October 23, 2010, accepted December 2, 2010)

Abstract. We prove the existence of nontrivial nonnegative solutions to the following nonlinear elliptic problem:

$$\begin{cases} -\Delta_p u + m(x)u^{p-1} = \lambda a(x)u^{\alpha-1} + b(x)u^{\beta-1}, x \in \Omega \\ u = 0, x \in \partial \Omega \end{cases}$$

where Δ_p denotes the p-Laplacian operator defined by $\Delta_p z = div(|\nabla z|^{p-2} |\nabla z|)$, $1 , <math>\Omega \subset \mathbb{R}^n$ is a bounded domain with smooth boundary, $1 (<math>p^* = \frac{pn}{n-p}$ if n > p, $p^* = \infty$ if

 $n \le p$), $\lambda \in R \setminus \{0\}$ is a real parameter, the weight m(x) is a bounded function with $||m||_{\infty} > 0$ and a(x), b(x) are continuous functions which change sign in $\overline{\Omega}$.

1. Introduction

We are concerned with the existence and multiplicity of nontrivial nonnegative solutions to the nonlinear elliptic problem:

$$\begin{cases}
-\Delta_{p}u + m(x)u^{p-1} = \lambda a(x)u^{\alpha-1} + b(x)u^{\beta-1}, x \in \Omega \\
u = 0, x \in \partial\Omega
\end{cases}$$
(1)

where Δ_p denotes the p-Laplacian operator defined by $\Delta_p z = div(|\nabla z|^{p-2} \nabla z)$, $1 , <math>\Omega \subset R^n$ is a bounded domain with smooth boundary, $1 , <math>(p^* = \frac{pn}{n-p} \text{ if } n > p, p^* = \infty \text{ if } n = p)$, $\lambda \in R \setminus \{0\}$, the weight m(x) is a bounded function with $||m||_{\infty} > 0$ and $a(x), b(x) \in C(\Omega)$ are satisfying $a^{\pm} = \max\{\pm a, 0\} \neq 0$ and $b^{\pm} = \max\{\pm b, \infty\} \neq 0$.

Problems involving the "p-Laplacian" arise from many branches of pure mathematics as in the theory of quasiregular and quasiconformal mapping (see[8,13]) as well as from various problems in mathematical physics notably the flow of non-Newtonian fluids: pseudo-plastic fluids correspond to $p \in (1,2)$ while dilatant fluids correspond to p > 2. The case p = 2 expresses Newtonian fluids [5].

We are motivated by the paper of Wu [14], in which problem (1) was discussed when $m \equiv 1$, $b \equiv 1$, p = 2, and $1 < \alpha < 2 < \beta < 2^*$. The authors proved that, there exists $\lambda_0 > 0$ such that if the parameter λ satisfy $0 < \lambda < \lambda_0$, then problem (1) for $m \equiv 1, b \equiv 1, p = 2$ and $1 < \alpha < 2 < \beta < 2^*$, has at least two positive solutions. Using the technique of Brown and Wu [7], in [15] the author discussed problem (1) with $m \neq 1, b \neq 1$, p > 2, and $2 < \beta < p < \alpha < p^*$. They obtained at least two positive solutions. In this paper, we discuss the problem (1) with $m \neq 1, b \neq 1$, 1 and <math>1 . The change in

⁺ Corresponding author. *E-mail address*: afrouzi@umz.ac.ir.

^{*} E-mail address: valinejadzahra@yahoo.com.

 α completely changes the nature of the solution set of (1). In fact, we shall prove that the problem (1) has at least two solutions u_0^+ and u_0^- such that $u_0^{\pm} \ge 0$ in Ω and $u_0^{\pm} \ne 0$ when the parameter λ belongs to a certain subset of R.

In the case when p=2, similar problems (with Dirichlet or Neuman boundary condition) have been studied by Binding et al. [6], Ambrosetti et al. [3], and Tehrani [11,12], by using variational methods and by Amman and Lopez-Gomez [4] used global bifurcation theory to study the problem. Similar problem in the ODE case (semilinear or quasilinear) have been studied in [1,9]. We refer to [2,10] for additional results on elliptic problems involving the p-Laplacian.

2. Variational setting

Let $W_0^{1,s}(\Omega) = W_0^{1,s}$, (s>0), denote the usual Sobolev space. In the Banach spac $W_0^{1,p}(\Omega) = W$ we introduce the norm

$$\|u\|_{W} = \left(\int_{\Omega} \left(|\nabla u|^{p} + m(x) |u|^{p} \right) dx \right)^{\frac{1}{p}}$$

which is equivalent to the standard one. First we give the definition of the weak solution of Eq. (1).

Definition 2.1. We say that $u \in W$ is a weak solution to (1) if for any $v \in W$ we have

$$\int_{\Omega} (|\nabla u|^{p-2} \nabla u \cdot \nabla v + m(x) |u|^{p-2} uv) dx = \lambda \int_{\Omega} a(x) |u|^{\alpha-2} uv dx + \int_{\Omega} b(x) |u|^{\beta-2} uv dx$$

It is clear that Problem (1) has a variational structure. Let $J_{\lambda}:W\to R$ be the corresponding energy functional of problem (1) is defined by

$$J_{\lambda}(u) = \frac{1}{p}M(u) - \frac{1}{\alpha}A(u) - \frac{1}{\beta}B(u)$$

where

$$M(u) = \int_{\Omega} (|\nabla u|^p + m(x) |u|^p) dx$$
, $A(u) = \lambda \int_{\Omega} a(x) |u|^{\alpha} dx$

and

$$B(u) = \int_{\Omega} b(x) |u|^{\beta} dx$$

It is well known that the weak solutions of Eq. (1) are the critical points of the energy functional J_{λ} . Let I be the energy functional associated with an elliptic problem on a Banach space X. If I is bounded below and I has a minimizer on X, then this minimizer is a critical point of I. So, it is a solution of the corresponding elliptic problem. However, the energy functional J_{λ} , is not bounded below on the whole space W, but is bounded on an appropriate subset, and a minimizer on this set (if it exists) gives rise to solution to Eq. (1).

Consider the Nehari minimization problem for $\lambda \in R \setminus \{0\}$,

$$\gamma_{\lambda} = \inf \{ J_{\lambda}(u) : u \in N_{\lambda} \},$$

where $N_{\lambda} = \{u \in W \setminus \{0\} : \langle J'_{\lambda}(u), (u) \rangle = 0\}$. It is easy to see that $u \in N_{\lambda}$ if and only if

$$M(u) - A(u) = B(u). (2)$$

Note that N_{λ} contains every nonzero solution of problem (1). Define

$$g_{\lambda}(u) = \langle J'_{\lambda}(u), u \rangle$$
.

Then for $u \in N_1$,

$$\langle g'_{\lambda}(u), u \rangle = pM(u) - \alpha A(u) - \beta B(u)$$
 (3)

$$= (p - \alpha)A(u) - (\beta - p)B(u) \tag{4}$$

$$= (p - \alpha)M(u) - (\beta - \alpha)B(u) \tag{5}$$

$$= (p - \beta)M(u) - (\alpha - \beta)A(u). \tag{6}$$