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Abstract. We prove the existence of nontrivial nonnegative solutions to the following nonlinear elliptic

problem:
—Au+m(X)uP™ = 2a(x)u“t +b(X)u”’t, x e Q
u=0,xeoQ2
where A denotes the p-Laplacian operator defined by A z =div(|Vz|"? Vz), 1<p<2, QcR"isa

bounded domain with smooth boundary , 1< p<2<f<a<p (p’ — PN it nsp, p=ooif
n-p

n<p), AeR\{0}is a real parameter , the weight m(x) is a bounded function with || m||,> 0 and

a(x), b(x) are continuous functions which change sign in Q.

1. Introduction

We are concerned with the existence and multiplicity of nontrivial nonnegative solutions to the nonlinear
elliptic problem:

—Au+m(x)uPt = da(x)u*t +b(x)u’*, xeQ
u=0,xeoQ oy

where A denotes the p-Laplacian operator defined by A z=div(|Vz|"?Vz), 1< p<2, QcR"is a

bounded domain with smooth boundary, 1<p<2<fB<a<p (p =PV if n>p, p'=o if
’ n — p

n=p), 4R\{0}, the weight m(x) is a bounded function with || m|_>0and a(x),b(x) e C(Q)
are satisfying a* = max {+a,0} £0and b* = max {b,o} £0 .
Problems involving the “p-Laplacian” arise from many branches of pure mathematics as in the theory of

quasiregular and quasiconformal mapping (see[8,13]) as well as from various problems in mathematical
physics notably the flow of non-Newtonian fluids: pseudo-plastic fluids correspond to p e (1,2) while

dilatant fluids correspond to p > 2. The case p = 2 expresses Newtonian fluids [5].

We are motivated by the paper of Wu [14], in which problem (1) was discussed when
m=1 b=1 p=2,and1<a <2< B<2". The authors proved that, there exists 1, > 0such that if the

parameter A satisfy 0 < A4 < 4, , then problem (1) for m=1,b=1p=2 and 1<a <2< B <2*, has at
least two positive solutions. Using the technique of Brown and Wu [7], in [15] the author discussed problem
(1) with m#£1,bZ£1, p>2,and 2< < p<a < p*.They obtained at least two positive solutions. In this

paper, we discuss the problem (1) with m£1,b#£1, 1< p<2 and 1< p<2< B <a < p* . The change in
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a completely changes the nature of the solution set of (1). In fact, we shall prove that the problem (1) has at
least two solutions ug and u, such that uy; >0 in and u? = 0when the parameter A belongs to a certain
subset of R.

In the case when p =2, similar problems (with Dirichlet or Neuman boundary condition) have been

studied by Binding et al. [6], Ambrosetti et al. [3], and Tehrani [11,12] , by using variational methods and by
Amman and Lopez-Gomez [4] used global bifurcation theory to study the problem. Similar problem in the
ODE case (semilinear or quasilinear) have been studied in [1,9]. We refer to [2,10] for additional results on
elliptic problems involving the p-Laplacian.

2. Variational setting

Let W, (Q) =W01'S,(s> 0) , denote the usual Sobolev space. In the Banach spac WP (Q2) =W we
introduce the norm

lull=([(Vu P +m(x) [u]* )

which is equivalent to the standard one. First we give the definition of the weak solution of Eq. (1).
Definition 2.1. We say that U € W is a weak solution to (1) if for any v € W we have

I(| Vu [P*VuVv+m(x) [u|P? uv)dx = AI a(x) |u|*Puvdx + _[b(x) |u |’ uvdx

Q Q Q

It is clear that Problem (1) has a variational structure. Let J, :W — R be the corresponding energy
functional of problem (1) is defined by

3, =My -t aw -1
p P B

where
M (u) =j(| vu P +m(x) |u[P)dx , A(u) = /Ij.a(x)lu |“dx

and
B(u) = jb(x) lu [#dx

It is well known that the weak solutions of Eq. (1) are the critical points of the energy functional J, . Let

I be the energy functional associated with an elliptic problem on a Banach space X. If | is bounded below and
I has a minimizer on X, then this minimizer is a critical point of I. So, it is a solution of the corresponding

elliptic problem. However, the energy functional J,, is not bounded below on the whole space W, but is
bounded on an appropriate subset, and a minimizer on this set (if it exists) gives rise to solution to Eq. (1).

Consider the Nehari minimization problem for 1 e R\{0},
y,=inf{J,(u):ueN,},
where N, = {u eW\{0}: (I} (u),(u)) = 0}. Itis easy to see that u e N, if and only if
M(u)— A(u) =B(u). 2)
Note that N, contains every nonzero solution of problem (1). Define
9,(u)=(J;(u)u).
ThenforueN,,

<9} (u),u>= pM(u) - cA(u) - B() ®3)
=(p—a)AU) - (8- p)B(U) (4)
=(p—a)M(u) - (B - )B(u) (%)
=(P=AM() —(a - P)A). (6)
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