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Abstract. We prove the existence of nontrivial nonnegative solutions to the following nonlinear elliptic 

problem: 
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a(x), b(x) are continuous functions which change sign in  . 

1. Introduction 

We are concerned with the existence and multiplicity of nontrivial nonnegative solutions to the nonlinear 

elliptic problem: 
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where 
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are satisfying  max ,0a a    0and  max ,b b     0 . 

Problems involving the “p-Laplacian” arise from many branches of pure mathematics as in the theory of 

quasiregular and quasiconformal mapping (see[8,13]) as well as from various problems in mathematical 

physics notably the flow of non-Newtonian fluids: pseudo-plastic fluids correspond to )2,1(p while 

dilatant fluids correspond to 2p . The case p = 2 expresses Newtonian fluids [5].  

We are motivated by the paper of Wu [14], in which problem (1) was discussed when 

2,1,1  pbm , and  221  . The authors proved that, there exists 00  such that if the 

parameter   satisfy  

00   , then problem (1) for 2,1,1  pbm  and  221  , has at 

least two positive solutions. Using the technique of Brown and Wu [7], in [15] the author discussed problem 

(1) with m 1,b 1 , 2p ,and  pp 2 .They obtained at least two positive solutions. In this 

paper, we discuss the problem (1) with m 1,b 1 , 21  p  and  pp 21  . The change in 
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  completely changes the nature of the solution set of (1). In fact, we shall prove that the problem (1) has at 

least two solutions 

0u and 

0u such that 00 
u

 
in  and 00 

u when the parameter  belongs to a certain 

subset of  R.  

 In the case when 2p , similar problems (with Dirichlet or Neuman boundary condition) have been 

studied by Binding et al. [6], Ambrosetti et al. [3], and Tehrani [11,12] , by using variational methods and by 

Amman and Lopez-Gomez [4] used global bifurcation theory to study the problem. Similar problem in the 

ODE case (semilinear or quasilinear) have been studied in [1,9]. We refer to [2,10] for additional results on 

elliptic problems involving the p-Laplacian. 

2. Variational setting 
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which is equivalent to the standard one. First we give the definition of the weak solution of  Eq. (1). 

Definition 2.1. We say that Wu is a weak solution to (1) if for any Wv we have 
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It is clear that Problem (1) has a variational structure. Let RWJ :  
be the corresponding energy 

functional of problem (1) is defined by 
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It is well known that the weak solutions of Eq. (1) are the critical points of the energy functional J . Let 

I be the energy functional associated with an elliptic problem on a Banach space X. If I is bounded below and 

I has a minimizer on X, then this minimizer is a critical point of I. So, it is a solution of the corresponding 

elliptic problem. However, the energy functional J , is not bounded below on the whole space W, but is 

bounded on an appropriate subset, and a minimizer on this set (if it exists) gives rise to solution to Eq. (1). 

Consider the Nehari minimization problem for }0{\R , 
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Note that N  contains every nonzero solution of problem (1). Define 
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