

T-Wise Balanced Designs from Binary Hamming Codes

Manjusri Basu¹ and Satya Bagchi²

¹ Department of Mathematics, University of Kalyani, Kalyani, W.B, India, Pin-741235,

(Received October 16, 2010, accepted December 21, 2010)

Abstract. In this paper we show that the binary Hamming codes $(2^r - 1, 2^{2^r - r - 1} - 2, 3)$ satisfy $(2^r - r - 2) - (2^{2^r - r - 1} - 1, \{3, 4, ..., 2^r - 4\}, 1)$ designs, where $r \ge 3$, a positive integer. For different values of r most of the t-wise balanced designs obtained from our constructions appear to be new.

Keywords: Hamming code, t-wise balanced design, Steiner system.

1. Introduction

A linear code C defined over the field F_2 with dimension k and length n is an [n,k] linear code over F_2 . If C has minimum distance d then C is an [n,k,d] linear code over the field F_2 [2].

Two codes are called equivalent if they differ only in the order of the symbols [4].

A generator matrix of the [n,k,d] linear code C over F_2^n is a k*n matrix G whose rows are linearly independent of C = RS(G) the row space of G. The generator matrix G of a linear code C = RS(G) can be written in a standard form: $G = [I_k \mid A^t]$ where the parity check matrix $H = [A \mid I_{n-k}]$, I_s is an identity matrix of order s [4]

The binary Hamming single-error-correcting codes are an important family of codes which are easy to encode and decode. A binary Hamming code $H_r = [2^r - 1, 2^r - r - 1, 3]$ has parity check matrix H whose $2^r - 1$ columns consist of all nonzero binary vectors of length r, each used once.

Let X be a v-set (i.e. a set with v elements), whose elements are called points. A t-design is a collection of distinct k-subsets (called blocks) of X with the property that any t-subset of X is contained in exactly λ blocks. We call this a $t - (v, k, \lambda)$ design. $2 - (v, k, \lambda)$ design is called pair wise balanced design or balanced incomplete block design. A Steiner system is a t-design with $\lambda = 1$, and a t - (v, k, 1) design is usually denoted by S(t, k, v) [1,5,6].

A **t**-wise balanced design (tBD) of type $t - (v, k, \lambda)$ is a pair (X, B) where X is a v-set and B is a collection of subsets of X (blocks) with the property that the size of every block is in the set K and every t-element subset of X is contained in exactly λ blocks. If $\lambda = 1$, the notation S(t, K, v) often used and the design is a t-wise Steiner system. If K is a set of positive integers strictly between \mathbf{r} and \mathbf{v} , then the tBD is proper [3].

2. Some Theorems

Theorem 2.1: The minimum distance of a linear code is the minimum weight of the nonzero codewords.

Theorem 2.2: Any binary Hamming code $H_r = [2^r - 1, 2^r - r - 1, 3]$ is equivalent to any binary

² Department of Mathematics, National Institute of Technology, Durgapur, Burdwan, W.B, India, Pin-713209

¹ Corresponding author. *E-mail address*: manjusri basu@yahoo.com_

² E-mail address: satya5050@gmail.com

 $code[2^r - 1, 2^r - r - 1, 3], r \ge 3$.

Theorem 2.3: Adding all code words of the generator matrix of the binary Hamming code gives 1 (i.e. all 1 code word).

Theorem 2.4: If we interchange two or more columns of a standard generator matrix of a code C and apply some row operations then we get a standard generator matrix of a code C' which is equivalent to the code C.

Theorem 2.5: If a code C = [n, k, d] holds t-wise balanced design then any equivalent code C = [n, k, d] of C holds the same t-wise balanced design.

Theorem 2.6: The weights of the Hamming code $H_r = [2^r - 1, 2^r - r - 1, 3]$, $r \ge 3$ are $3, 4, ..., 2^r - 4$ excluding all $\mathbf{0}$ and all $\mathbf{1}$ codes.

3. New Theorems

Theorem 3.1: The binary Hamming codewords excluding **0** and **1** codes satisfy the t-wise balanced designs $(2^r - r - 2) - (2^{2^r - r - 1} - 2, \{3, 4, ..., 2^r - 4\}, 1)$, where $r \ge 3$

Proof: The dimension of the Hamming code $H_r = [2^r - 1, 2^r - r - 1, 3]$ is $2^r - r - 1$. Let H_r^* represent the codes H_r excluding 0 and 1. Hence the number of codewords of H_r^* is $2^{2^r - r - 1} - 2$. The weights of H_r^* are $3,4,...,2^r - 4$ (Theorem 2.6). Hence $v = 2^{2^r - r - 1} - 2$ and $K = 3,4,...,2^r - 4$.

We consider the Hamming code $H_r = [2^r - 1, 2^r - r - 1, 3]$ The generator matrix

$$G = [I \mid A] \tag{1}$$

of H_r is of the order $(2^r - r - 1) \times (2^r - 1)$ where I is the identity matrix of order $2^r - r - 1$.

Let us choose $2^r - r - 2$ columns out of $2^r - 1$ columns of G.

Two cases arise:

Case I: All $2^r - r - 2$ columns are in I.

We obtain corresponding codewords by linear combinations of rows of these columns. And we have exactly one codeword of length $2^r - r - 2$ with $2^r - r - 2$ consecutive 1.

Case II: At least one column of $2^r - r - 2$ columns is not in I.

Step I. Select a column of the selected columns which is not in I. If there is no such column then goto Step IV.

Step II. Interchange the selected column with any non-selected column in *I*.

Step III. Goto Step I.

Step IV. All selected $2^r - r - 2$ columns are among first $2^r - r - 1$ columns of G', transformed matrix of the generator matrix G(Eq.(1)).

Now by row operations G' can be written in standard form $G''=[I \mid A']$. From this standard generator matrix G'', we obtain the codewords C'' equivalent to H_r (Theorem 2.4). Thus by case I we have exactly one codeword of length $2^r - r - 2$ with $2^r - r - 2$ consecutive 1. Hence C'' holds t-wise balanced design $2^r - r - 2 - (2^{2^r - r - 1} - 2, \{3,4,...,2^r - 4\}, 1)$.

Therefore the code H_r^* equivalent to C'' holds t-wise balanced design $2^r - r - 2 - (2^{2^r - r - 1} - 2, \{3,4,...,2^r - 4\},1)$ (Theorem 2.5). This completes the proof.

Thus H_r^* is $2^r - r - 2$ -wise Steiner system $S(2^r - r - 2, \{3, 4, ..., 2^r - 4\}, 2^{2^r - r - 1} - 2)$.

Lemma: The H_r^* is not proper t-wise balanced design.