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Abstract. In this paper, a ZK(m, n, k)  equation with generalized evolution and time-dependent coefficients 
is investigated. Exp-function method combined with F-expansion method are used to determine eight 
families of exact solutions of exp-function type for this equation. When the parameters are taken as special 
values, every family of solution can be reduced to some solitary wave solutions and periodic wave solutions. 
The results presented in this paper improve the previous results. 
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1. Introduction 
Nonlinear partial differential equations (NPDEs) are widely used to describe complex phenomena in 

various fields of science, especially in physics. Searching for exact soliton solutions of NPDEs plays an 
important and significant role in the study on the dynamics of those phenomena. Up to now, many effective 
ansatz methods have been presented, such as the tanh method [1], Jacobi elliptic function method [2], F-
expansion method [3], the Exp-function method [4-7], auxiliary equation method [8,9], and so on. Here, it is 
worth to mention that the two methods, the Exp-function method and F-expansion method can be combined 
to form one method [10-13]. 

In this paper, by using Exp-function method combined with F-expansion method, we will study the  
ZK(m, n, k) equation with generalized evolution and time-dependent coefficients [14] 

( ) ( )( ) ( )( ) ( )( ) ( ) ,l m n k l
t x xxx yyxu a t u b t u c t u t uα+ + + =                                            (1) 

where ( )a t , ( )b t , ( )c t  and ( )tα  are all time-dependent coefficients, while l , m , n  and k  are integers. 
Generally, Eq. (1) is not integrable. In [14], using a solitary wave ansatz in the form of sec ph  functions, 
Triki and Wazwaz obtained an exact one-soliton solution for Eq. (1). 

In this work, we will explore more types of exact solutions for Eq. (1). 

2. Description of the method 
In this section, we review the combining the Exp-function method with F-expansion method [12,13] at 

first. 
Given a nonlinear partial differential equation, for instance, in two variables, as follows: 

( , , , , , ) 0,x t xx xtp u u u u u =K                                                                     (2) 

where P  is in general a nonlinear function of its variables. 
We firstly use the Exp-function method to obtain new exact solutions of the following Riccati equation 
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d

φ ξ φ ξ γφ ξ
ξ

′ = = + ,                                                                (3) 

where A  and γ  are arbitrary constants, then using the Riccati equation (3) as auxiliary equation and its 
exact solutions, we obtain exact solutions  of the nonlinear partial differential equation(2). 
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Seeking for the exact solutions of Eq. (3), we introducing a complex variable η , defined by 

0η ρξ ξ= + ,                                                                               (4) 

where ρ  is a constant to be determined later, 0ξ  is an arbitrary constant, Riccati equation (3) converts to 
2 0Aρφ γφ′ − − = ,                                                                           (5) 

where prime denotes the derivative with respect to η . 

    According to the Exp-function method, we assume that the solution of Eq. (5) can be expressed in the 
following form 
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where e , d , g  and f  are positive integers which are given by the homogeneous balance principle, ea , L , 

da− , gb ,L , fb−  are unknown constants to be determined. To determine the values of e  and g , we usually  
balance the linear term of the highest order in Eq. (5) with the highest order nonlinear term. Similarly, we 
can determine d  and f  by balancing the linear term of the lowest order in Eq. (5) with the lowest order 
nonlinear term, we obtain e g= , d f= . For simplicity, we set 1e g= =  and 1d f= = , then Eq. (6) 
becomes 
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Substituting Eq. (7) into Eq. (5), equating to zero the coefficients of all powers of exp( )nη  
( 2, 1,0,1,2)n = − −  yields a set of algebraic equations for 1a , 0a , 1a− , 1b , 0b , 1b−  and μ . Solving the 
system of algebraic equations by using Maple, we obtain the new exact solution of Eq. (3), which read 
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where 1a−  and 1b  are free parameters ; 
2 2

0 0
0 0 1 0

1

2 2 2
0 0

0 0 1 0
1

( ) exp(2 ) exp( 2 )
4

( ) exp(2 ) exp( 2 )
4

a Ab A A Aa b
Ab

a Ab A Ab b
Ab

γ γ ξ ξ γ ξ ξ
γ γ γ

γ
γ

φ
γ γ ξ ξ γ ξ ξ

γ γ

−

−

−
−

+
− + + + − − − −

−
=

+
− + + + − − −

,                    (9) 

where 0a , 0b  and 1b−  are free parameters. 

By choosing properly values of 0a , 1a− , 0b , 1b− , we find many kinds of hyperbolic function solutions 
and triangular periodic solutions of Eq. (3), which are listed as follows: 

(ⅰ)When 0 0ξ = , 1 1b = , 1
Aa
γ− = ± − , 0A

γ
< , the solution (8) becomes 

tanh( )A Aφ γ ξ
γ γ

= − − − ,                                                                 (10) 

and 


