. AcADEMIC

ISSN 1746-7659, England, UK
| Lo Weorld Academic Union ]

Journal of Information and Computing Science
Vol. 7, No. 2, 2012, pp.140-142

The Prove of a Class of Variational Inequalities

Xiangrui Meng, Wenya Gu

College of Binjiang, Nanjing University of Information Science & Technology, Nanjing Jiangsu 210044,
China

(Received February13, 2012, accepted March 2, 2012)

Abstract. If f(x) is a differentiable convex function and its Heissen matrix is positive semi-definite,we
0 . 1 0 0
can prove the inequality (Xx—X")" Vf (X) > -5 (x—X)" (Vf (X) - VT (x)).

Meet the above inequality from the general convex function of the convergence card sequence of functions
on the measurable set.
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1. Introduction

let f(x) be a differentiable convex function, and Vf (x) be the gradient of the function. X" is the only

0
optimal value point, which makes Vf (x*)=0.Thentoany x and x, if H is positive semi-definite,

0 0 0

(x=x")"Vf(X) 2—%(x—x)T (VF (x) - V£ (X)) (D
(see [11],[12],[13],[14],[15].[16],[17]), but if f(Xx) only be a differentiable convex function we can get
weaker inequality(see [18],[19]),can we get the inequality to any convex function?
2. Some properties

Conclusion 1: Let H be positive semi-definite. Then we have
a Hb> —%(a—b)T H(a—b)
Proof: (a-— b)T H(a-Db)
=(a—b,H(a-b))
=(a,Ha) - (b,Ha)—(a, Hb) + (b, Hb)
since H is positive semi-definite and (a, Hb) = (b, Ha) ,

we have (a,Hb)z-%(a—b, H(a=b)).

Conclusion 2: assume that f (x) is differentiable onR", then f(x) convex if and only if

F(y)=F(x) 2 Vi) (y-x)-
Proof: if f(X) isconvex, then
f(L-9)x+)<@-0)f(xX)+&(y), 6<[01],%x,y,eR"

Sowe have f (y)— f(x)> f(x+6(y —x)) - £ (x)
0

letting @ — 0, , we get f(y)— f(X)>(y—x)"Vf(x).
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Conversely if f(X) :%xT Hx+c'x,H" =H and H is semi-definite, the conclusion is obviously.
1 . . -
Theorem 1. Let f(X) = EXT Hx+c"x,H" =H andH be positive semi-ddefinite, Then we have

(x= XY Vi (x) > —%(x— X)" (VF (x) = Vi (x) 2)

Proof: note that in this case Vf (x) = Hx+c and thus the equivalent of (2) is

(]x—x*)T(Hx+c)2—%(x—§<)TH(x—;) (3

:
By using Hx'+c=0 , we have  (X=X)"{(Hx+c)-H(x—=x)}=0 and consequently
] 0
(x=x)" (Hx+c) = (x=x)" H(x=x")
Since H is positive semi-definite ,we can get the conclusion .
For a general convex function , weaker than (1) the conclusion is clearly established.

Theorem 2.Let f(X) :R" — R be convex and differentiable. Then we have

(§<— X)) VE(X) > —(x— §<)T (Vf(x)-Vf (§<)). (see [15],[16]) (4)
Proof: since f(X) is convex and differentiable,we have
f(x) > F(X)+(x =x)"VI(x). (5)
Since X* is the minimum point, f (X) > f (x*). Therefore,it follows from (5)that
(x=x)"'VE(x)> f(x)- f(X) (6)
Since f isconvex, f(x)—f(X)=>Vf(X)"(x—X) Using (5) (6) we have:
(x=X)"VI(x) > (x—X)" VI (X) (7

Adding (X —x)" Vf (x) to the both sides of (7),we get
(X —x*)" VI (X) > (x=X)" (Vf(X)-Vf(X)).
For general convex function ,can conclude that (1).
3. The main result

Conclusion 3: L°(u) is a complete metric space, that is to say any cauchy sequence of the L (u)
converges to an element of the L (x).

Theorem 3: If1< p<oo,and if{f,} is a Cauchy sequence in L"(x), with limit f then{f } has a
subsequence which converges pointwise almost everywhere to f (x) .

According to Theorem 3(see [20]),for a differentiable convex function f (x) , X e R" ,can always find a
Cauchy sequence {f } of L"(«) .By the conclusion of Theorem 3 shows that a subsequence {f,} can

always be found in the above Cauchy sequence ,which converge to f(X) . fni is a differentiable convex

function and meets f, (x) = % X' H o X+ c'x, H, = H,Ti , among which, H, is positive semi-definite.
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