

Dual lag quasi-synchronization of a class of chaotic systems with parameter mismatch

Runzi Luo and Yinglan Wang

Department of Mathematics, Nanchang University, 330031, P. R. China (Received February 12, 2012, accepted April 10, 2012)

Abstract. This paper studies the effect of parameter mismatch on the dual-lag synchronization of a class of coupled chaotic systems. Based on the Lyapunov stability theory, a new definition for global dual lag quasi-synchronization is introduced and used to analyze the synchronous behavior of coupled chaotic systems in the presence of parameter mismatch. Numerical simulations on the Ikeda oscillator are presented to verify the theoretical results

Keywords: Dual lag quasi-synchronization; Time delay system; Parameter mismatch.

1. Introduction

Chaos synchronization, which was firstly introduced by Pecora and Carrols [1], has attracted increased interest for the applications of secure communications and spread spectrum communications. For chaotic communication systems, it would also be of great interest to exploit the property of multiplexing chaotic signals in one communication channel. In 1996, Tsimring and Sushchik [2] investigated multiplexing chaos synchronization in a simple map and an electronic circuit model for the first time. Then in 2000 Liu and Davids raised the concept of "dual synchronization", which refers to using a scale signal to simultaneously synchronize two different pairs of chaotic oscillator (two masters and two slaves) [3].

Many studies on dual synchronization of chaotic systems have been reported. For example, Ref. [4] considered the dual synchronization in Colpitts electronic oscillators. Ref.[5] studied the dual synchronization of the Lorenz and the R \ddot{o} ssler systems. Dual and cross dual synchronization of chaotic external cavity laser diodes were investigated in [6]. In[7] experimental and numerical dual synchronization of chaos in two pairs of one-way coupled microchip lasers using only one transmission channel were studied. Dual synchronization in modulated time delay system using delay feedback controller was proposed in [8]. Based on Lyapunov stability theory, a general method to achieve the dual-anticipating, dual, dual-lag synchronization of time-delayed chaotic systems was suggested.

It is well known that parameter mismatch is inevitable in practical implementations of chaos synchronization because of noise or other artificial factors. In certain cases parameter mismatches are detrimental to the synchronization quality: in the case of small parameter mismatches the synchronization error does not decay to zero with time, but can show small fluctuations about zero or even a non-zero mean value; larger values of parameter mismatches can result in the loss of synchronization [9].

Recently, there are some reports on chaos synchronization in the presence of parameter mismatch. In Ref. [10] the authors investigated the robustness of the synchronization with respect to parameter mismatches or noise. In Ref. [11], the authors studied the synchronization between two nonidentical unidirectionally linearly coupled chaotic systems with time delay and showed that parameter mismatch is of crucial importance in achieving synchronization. The effect of parameter mismatch on lag synchronization of chaotic systems was studied in Ref. [12]. Ref. [9] considered the effect of parameter mismatch on anticipating synchronization of chaotic systems with time delay in the framework of the master-slave configuration. However, to the best of our knowledge, only a few studies have addressed the effects of parameter mismatches on dual lag synchronization theoretically.

In this paper, we present theoretical analysis and numerical simulations of the parameter-mismatch effect on dual lag quasi-synchronization for a class of coupled chaotic systems. A new definition for global dual lag quasi-synchronization is introduced and a global dual lag synchronization error bound together with a sufficient condition is derived. Numerical simulations on the Ikeda oscillator are presented to verify the theoretical results

The rest part of the paper is organized as follows: In the next section, the problem to be studied is

formulated and some preliminaries are presented. In Sec. 3, a sufficient condition for dual lag quasi-synchronization in the presence of parameter mismatch is derived. An illustrating example is then given in Sec. 4, and some conclusions are finally drawn in Sec. 5.

2. Problem formulation and preliminaries

Consider a class of delay chaotic system as

$$\dot{x}_1(t) = A_1 x_1 + B_1 f(x_1(t - \tau_1(t))), \tag{1}$$

where $x_1(t) \in R^n$ is the state vector, A_1 is an $n \times n$ symmetric matrix, B_1 is an $n \times n$ matrix, $f : R^n \in R^n$ is a nonlinear function with f(0) = 0. $\tau_1(t)$ is the delay time of the feedback loop, where $0 \le \tau_1(t) \le \tau_1$.

Many chaotic systems with delays are of the form of (1), for example the Ikeda oscillator [13], the Mackey-Glass oscillator [14], the Vallee system [15], etc.

We take another system with parameter mismatch from (1) as

$$\dot{y}_1(t) = A_2 y_1 + B_2 f(y_1(t - \tau_2(t))), \tag{2}$$

where $y_1(t) \in \mathbb{R}^n$ is the state vector, A_2 is an $n \times n$ symmetric matrix and B_2 is an $n \times n$ matrix. $\tau_2(t)$ is the delay time of the feedback loop, where $0 \le \tau_2(t) \le \tau_2$.

By using a combination of systems (1) and (2), we have the following drive system:

$$\begin{cases} \dot{x}_1(t) = A_1 x_1 + B_1 f(x_1(t - \tau_1(t))) + C_1 g(y_1(t - \tau_2(t))), \\ \dot{y}_1(t) = A_2 y_1 + B_2 f(y_1(t - \tau_2(t))) + C_2 g(x_1(t - \tau_1(t))), \end{cases}$$
(3)

where C_1, C_2 are $n \times n$ matrices, $g: \mathbb{R}^n \to \mathbb{R}^n$ is a nonlinear function with g(0) = 0.

To synchronize system (3) using feedback control in the framework of the drive-response configuration, we design the response system as:

$$\begin{cases} \dot{x}_{2}(t) = \overline{A}_{1}x_{2} + \overline{B}_{1}f(x_{2}(t - \tau_{1}(t))) + \overline{C}_{1}g(y_{2}(t - \tau_{2}(t))) + K(x_{1}(t - \tau(t)) - y_{1}(t)), \\ \dot{y}_{2}(t) = \overline{A}_{2}y_{2} + \overline{B}_{2}f(y_{2}(t - \tau_{2}(t))) + \overline{C}_{2}g(x_{2}(t - \tau_{1}(t))) + K(x_{2}(t - \tau(t)) - y_{2}(t)), \end{cases}$$

$$(4)$$

where $x_2 \in \mathbb{R}^n$, $y_2 \in \mathbb{R}^n$ are the response states, $\tau(t)$ is coupling delay which is bounded and K is the coupling strength.

Ref.[8] investigated the dual lag synchronization between systems (3) and (4) with $A_1 = \overline{A}_1 = -a_1$, $B_1 = \overline{B}_1 = -b_1$, $A_2 = \overline{A}_2 = -a_2$, $B_2 = \overline{B}_2 = b_2$, $C_1 = \overline{C}_1 = b_2$, $C_2 = \overline{C}_2 = b_1$, g(x) = f(x),

and $\tau(t) = \tau_p$, where τ_p is a constant. In this paper, we focus on the case of $A_i \neq \overline{A}_i, B_i \neq \overline{B}_i, C_i \neq \overline{C}_i, i = 1, 2$. We use $\Delta A_i = \overline{A}_i - A_i, \Delta B_i = \overline{B}_i - B_i, \Delta C_i = \overline{C}_i - C_i, i = 1, 2$,

to denote the parameter mismatch errors, and let $e_1(t) = x_2(t) - x_1(t - \tau(t))$, $e_2(t) = y_2(t) - y_1(t - \tau(t))$ be the synchronization errors between the states of drive system (3) and response system (4). By subtracting Eq.(3) from Eq. (4), we obtain the following error system:

$$\begin{cases} \dot{e}_{1}(t) = \overline{A}_{1}e_{1}(t) + \overline{B}_{1}[f(x_{2}(t-\tau_{1}(t))) - f(x_{1}(t-\tau_{1}(t)-\tau(t)))] \\ + \overline{C}_{1}[g(y_{2}(t-\tau_{2}(t))) - g(y_{1}(t-\tau_{2}(t)-\tau(t)))] + \Delta A_{1}x_{1}(t-\tau(t)) \\ + \Delta B_{1}f(x_{1}(t-\tau_{1}(t)-\tau(t))) + \Delta C_{1}g(y_{1}(t-\tau_{2}(t)-\tau(t))) \\ + [A_{1}x_{1}(t-\tau(t)) + B_{1}f(x_{1}(t-\tau_{1}(t)-\tau(t))) + C_{1}g(y_{1}(t-\tau_{2}(t)-\tau(t)))]\dot{\tau}(t) - Ke_{1}(t), \\ \dot{e}_{2}(t) = \overline{A}_{2}e_{2}(t) + \overline{B}_{2}[f(y_{2}(t-\tau_{2}(t))) - f(y_{1}(t-\tau_{2}(t)-\tau(t)))] \\ + \overline{C}_{2}[g(x_{2}(t-\tau_{1}(t))) - g(x_{1}(t-\tau_{1}(t)-\tau(t)))] + \Delta A_{2}y_{1}(t-\tau(t)) \\ + \Delta B_{2}f(y_{1}(t-\tau_{2}(t)-\tau(t))) + \Delta C_{2}g(x_{1}(t-\tau_{1}(t)-\tau(t))) \\ + [A_{2}y_{1}(t-\tau(t)) + B_{2}f(y_{1}(t-\tau_{2}(t)-\tau(t))) + C_{2}g(x_{1}(t-\tau_{1}(t)-\tau(t)))]\dot{\tau}(t) - ke_{2}(t). \end{cases}$$