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Abstract.  This paper studies the effect of parameter mismatch on the dual-lag synchronization of a class 
of coupled chaotic systems. Based on the Lyapunov stability theory, a new definition for global dual lag 
quasi-synchronization is introduced and used to analyze the synchronous behavior of coupled chaotic 
systems in the presence of parameter mismatch. Numerical simulations on the Ikeda oscillator are presented 
to verify the theoretical results 

Keywords: Dual lag quasi-synchronization; Time delay system; Parameter mismatch. 

1. Introduction  
Chaos synchronization, which was firstly introduced by Pecora and Carrols [1], has attracted increased 

interest for the applications of secure communications and spread spectrum communications. For chaotic 
communication systems, it would also be of great interest to exploit the property of multiplexing chaotic 
signals in one communication channel. In 1996, Tsimring and Sushchik [2] investigated multiplexing chaos 
synchronization in a simple map and an electronic circuit model for the first time. Then in 2000 Liu and 
Davids raised the concept of “dual synchronization", which refers to using a scale signal to simultaneously 
synchronize two different pairs of chaotic oscillator (two masters and two slaves) [3].  

Many studies on dual synchronization of chaotic systems have been reported. For example, Ref. [4] 
considered the dual synchronization in Colpitts electronic oscillators. Ref.[5] studied the dual 
synchronization of the Lorenz and the R o ssler systems. Dual and cross dual synchronization of chaotic 
external cavity laser diodes were investigated in [6]. In[7] experimental and numerical dual synchronization 
of chaos in two pairs of one-way coupled microchip lasers using only one transmission channel were studied. 
Dual synchronization in modulated time delay system using delay feedback controller was proposed in [8]. 
Based on Lyapunov stability theory, a general method to achieve the dual-anticipating, dual, dual-lag 
synchronization of time-delayed chaotic systems was suggested.  

It is well known that parameter mismatch is inevitable in practical implementations of chaos 
synchronization because of noise or other artificial factors. In certain cases parameter mismatches are 
detrimental to the synchronization quality: in the case of small parameter mismatches the synchronization 
error does not decay to zero with time, but can show small fluctuations about zero or even a non-zero mean 
value; larger values of parameter mismatches can result in the loss of synchronization [9].  

Recently, there are some reports on chaos synchronization in the presence of parameter mismatch. In 
Ref. [10] the authors investigated the robustness of the synchronization with respect to parameter 
mismatches or noise. In Ref. [11], the authors studied the synchronization between two nonidentical 
unidirectionally linearly coupled chaotic systems with time delay and showed that parameter mismatch is of 
crucial importance in achieving synchronization. The effect of parameter mismatch on lag synchronization of 
chaotic systems was studied in Ref. [12]. Ref. [9] considered the effect of parameter mismatch on 
anticipating synchronization of chaotic systems with time delay in the framework of the master-slave 
configuration. However, to the best of our knowledge, only a few studies have addressed the effects of 
parameter mismatches on dual lag synchronization theoretically.  

In this paper, we present theoretical analysis and numerical simulations of the parameter-mismatch 
effect on dual lag quasi-synchronization for a class of coupled chaotic systems. A new definition for global 
dual lag quasi-synchronization is introduced and a global dual lag synchronization error bound together with 
a sufficient condition is derived. Numerical simulations on the Ikeda oscillator are presented to verify the 
theoretical results  

The rest part of the paper is organized as follows: In the next section, the problem to be studied is 
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formulated and some preliminaries are presented. In Sec. 3, a sufficient condition for dual lag quasi-
synchronization in the presence of parameter mismatch is derived. An illustrating example is then given in 
Sec. 4, and some conclusions are finally drawn in Sec. 5. 

2. Problem formulation and preliminaries 
Consider a class of delay chaotic system as  

 1 1 1 1 1 1( ) ( ( τ ( )))t A x B f x t tx                                                                (1) 

where 1( ) nx t R  is the state vector, 1A  is an ×n n  symmetric matrix, 1B  is an ×n n  matrix, n nf R R   is 
a nonlinear function with (0) 0f  . 1τ ( )t  is the delay time of the feedback loop, where 1 10 τ ( ) τt  .  

Many chaotic systems with delays are of the form of (1), for example the Ikeda oscillator [13], the 
Mackey-Glass oscillator [14], the Vallee system [15], etc.  

We take another system with parameter mismatch from (1) as  
 2 1 2 1 21( ) ( ( τ ( )))t A y B f y t ty                                                            (2) 

where 1( ) ny t R  is the state vector, 2A  is an ×n n  symmetric matrix and 2B  is an ×n n  matrix. 2τ ( )t  is 
the delay time of the feedback loop, where 2 20 τ ( ) τt  .  

By using a combination of systems (1) and (2), we have the following drive system:  

 1 1 1 1 1 1 1 1 2

2 1 2 1 2 2 1 11

( ) ( ( τ ( ))) ( ( τ ( )))
( ) ( ( τ ( ))) ( ( τ ( )))

t A x B f x t t C g y t tx
t A y B f y t t C g x t ty
     

      




                               (3) 

where 1 2C C  are ×n n  matrices, n ng R R   is a nonlinear function with (0) 0g  .  
To synchronize system (3) using feedback control in the framework of the drive-response configuration, 

we design the response system as:  

 2 11 12 2 1 2 2 1 1

22 22 2 2 2 1 2 22

( ) ( ( τ ( ))) ( ( τ ( ))) ( ( τ( )) ( ))
( ) ( ( τ ( ))) ( ( τ ( ))) ( ( τ( )) ( ))

t x f x t t g y t t K x t t y tx B CA
t y f y t t g x t t K x t t y ty B CA

        
         




          (4) 

where 2 2
n nx R y R    are the response states, τ( )t  is coupling delay which is bounded and K  is the 

coupling strength.  
Ref.[8] investigated the dual lag synchronization between systems (3) and (4) with 

1 21 2 1 21 1 1 1 2 2 2 2 1 2 2 1 ( ) ( )A a B b A a B b C b C b g x f xB B C CA A                     
and τ( ) τ pt    where τ p  is a constant. In this paper, we focus on the case of 

1 2ii ii i iA B C iB CA          We use Δ Δ Δ 1 2ii ii i i i i iA A B B C C iB CA              
to denote the parameter mismatch errors, and let 1 2 1 2 2 1( ) ( ) ( τ( )) ( ) ( ) ( τ( ))e t x t x t t e t y t y t t        be 
the synchronization errors between the states of drive system (3) and response system (4). By subtracting 
Eq.(3) from Eq. (4), we obtain the following error system:  
 

1 11 1 2 1 1 1

1 2 2 1 2 1 1

1 1 1 1 1 2

1 1 1 1 1

( ) ( ) [ ( ( τ ( ))) ( ( τ ( ) τ( )))]
[ ( ( τ ( ))) ( ( τ ( ) τ( )))] Δ ( τ( ))

Δ ( ( τ ( ) τ( ))) Δ ( ( τ ( ) τ( )))
[ ( τ( )) ( ( τ ( ) τ(

t e t f x t t f x t t te BA
g y t t g y t t t A x t tC

B f x t t t C g y t t t
A x t t B f x t t t

     

      
     
    



     

     

     1 1 2 1

2 22 2 2 2 1 2

2 2 1 1 1 2 1

2 1 2 2 1 1

))) ( ( τ ( ) τ( )))] ( ) ( )
( ) ( ) [ ( ( τ ( ))) ( ( τ ( ) τ( )))]

[ ( ( τ ( ))) ( ( τ ( ) τ( )))] Δ ( τ( ))
Δ ( ( τ ( ) τ( ))) Δ ( ( τ ( ) τ( ))

C g y t t t t Ke t
t e t f y t t f y t t te BA

g x t t g x t t t A y t tC
B f y t t t C g x t t t

    
     

      
     





     

     

2 1 2 1 2 2 1 1 2

)
[ ( τ( )) ( ( τ ( ) τ( ))) ( ( τ ( ) τ( )))] ( ) ( ).A y t t B f y t t t C g x t t t t ke t












          

 （5）

     

     


